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Abstract 
Characterizing biological processes with microscopy techniques that allow one to 

directly visualize the complexity of life is an important component of 

understanding both physiological function and structure. The wide spectrum of 

biological structures from individual proteins to whole ecosystems necessitates 

that multiple techniques are used to characterize all levels of organization. While 

existing techniques cover portions of this spectrum, continued improvement of 

established methods and development of new techniques is needed. This 

dissertation outlines my journey in enabling new approaches for imaging 

biosystems at various scales. Chapters 1 and 2 provide motivation for bioimaging 

and background for the use of electron microscopy and microfabrication 

techniques for imaging applications. Chapter 3 highlights my use of established 

electron microscopy techniques for structural biology. Cell-free expression is 

described as a biomass production method for generating proteins of sufficient 

yield and purity for structural analysis. Here I demonstrate a 2D projection map of 

the protein CcmK at 14 Å resolution using 2D electron crystallography as well as 

the expression of the membrane protein DGAT into liposomes for use in single 

particle electron microscopy studies. I also present nanoscale cryogenic imaging 

of whole cells in their native state using electron tomography. Chapter 4 

introduces the concept of imaging liquids with electron microscopy and its 

potential for capturing dynamic processes in biology and chemistry in real-time. 

Details for fabrication of the devices used for imaging are included. Radiation 
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chemistry and numerical simulation is used to predict pH changes of the solution 

depending on the solutes present in the aqueous solution. Investigation of the 

role of electron irradiation effects on liquid samples is continued in Chapter 5 

where new multiwindow devices are fabricated and used to characterize the 

effects of repeated irradiation events on a sample. While the multiwindow 

devices described in Chapter 5 expand on the scientific utility of the commercially 

available platforms they are used in, a new platform for directed-flow imaging of 

liquid and samples in solution with liquid-cell electron microscopy is presented in 

Chapter 6. This platform allows for increased environmental control, greater 

experimental reproducibility, and allows for unique mixing and flow experiments 

not possible prior to the development of this platform. Finally, efforts to optimize 

imaging conditions for thick, low contrast, and electron beam sensitive samples is 

presented in Chapter 7 where the image signal-to-noise ratio is quantified across 

different electron imaging modalities to determine which strategy should be used 

for optimal liquid imaging. Furthermore, I compare the effects of electron 

irradiation damage on liquid samples versus cryogenically preserved samples.  

Overall, the compilation of research from Chapters 3 through 7 describe findings 

that provide a basis for future work in advancing the liquid-cell electron 

microscopy field, from expanding experimental reproducibility, optimizing imaging 

conditions for future work, and laying the groundwork for establishing irradiation 

limits for biological structures to enable dynamic imaging at high-resolution and 

for providing correlative holistic imaging across modalities. 
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1 Chapter 1: Introduction and Motivation 
The wide diversity of life which arises from just four nucleotides is a remarkable 

example of the hierarchical nature of biology where varied combinations of just a 

few subunits results in diverse structures and functions. The unique structure of 

an individual protein is determined by the order of amino acids it is composed of, 

which in turn is dictated by the genetic code it is translated from. Importantly, the 

specific structure of a protein is intrinsically related to its function, where this 

relationship remains important for macromolecular complexes, organelles, cells, 

tissues, and extends through all levels of biological organization. Understanding 

the function and structure of biological complexes is the focus of a large amount 

of biological research, since knowledge of the function of a biomolecule can yield 

important insights into the mechanisms underlying disease, energy generation, 

and food production among many others.  

Microscopic imaging techniques have been an important technique for biologists 

since the first cells were imaged with primitive optical microscopes in the 17th 

century. Since then, visualization of biomolecules has been an integral to 

understanding and defining the structure function relationship. A well known 

historical example is the solution of the helical structure of DNA determined by 

James Watson and Francis Crick after seeing Rosalind Franklind’s x-ray 

diffraction patterns (1, 2).  

 Although a number of different bioimaging modalities exist, each technique only 

fills a particular role for imaging over a given spatial and temporal range. Since 
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biological structures span scales from angstroms to meters the types of 

techniques needed to cover this whole range is extensive. While large portions of 

the spatial and temporal spectrum are occupied by established techniques, gaps 

still remain which need to be filled and improvements to some existing 

techniques remains necessary. The continuing demand for improved bioimaging 

capabilities is exemplified by the fact that the 2017 and 2014 Nobel prize in 

Chemistry were awarded for the development of cryogenic electron microscopy 

and for the development of super resolution fluorescence microscopy 

respectively. 

Imaging biological dynamics in real time and at high spatial resolutions is an 

existing gap in the spectrum of bioimaging. While x-ray diffraction techniques can 

provide subatomic resolution structures of crystalized proteins, and cryogenic 

electron microscopy can provide atomic resolution structures of proteins and 

nanometer resolutions of whole organisms, the ability to observe dynamic 

processes occurring in the same sample in its native hydrated state is not 

currently possible. Liquid cell transmission electron microscopy (TEM) has the 

potential to fill this gap. As the field has only relatively recently begun in earnest, 

in order to realize liquid cell transmission electron microscopy of biological 

dynamics a number of instrumental and technique improvements are needed. At 

the offset of this dissertation many challenges existed for imaging cells in liquid 

within a TEM. Better design and fabrication of platforms for holding liquid 

samples inside the microscope were required, along with microfabrication work to 
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allow for improved environmental control of samples and enhance reproducibility. 

Characterization of imaging artifacts due to electron beam driven morphological 

and physiological changes were required for confidence in observed results, and 

the parameters for obtaining images which yield the most information was still 

unknown. The following chapters detail my efforts and journey to become an 

expert in TEM at room and cryogenic temperatures, experimental biochemistry 

and molecular biology and advance liquid cell transmission electron microscopy 

for biological samples through instrumentation and technique development. 
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2 Chapter 2: Background 

2.1 Bioimaging 

The wide range of imaging strategies for investigation biological structures testify 

to the large scale of structural information contained within biological systems. 

The sensitivity of biological structures to environmental conditions such as 

temperature, light, humidity, and chemical/mechanical stimulus requires that 

imaging is performed in a way that minimizes physiological perturbation of the 

structures and processes being visualized. As such, techniques where the probe 

does not damage the sample, or in the case of damaging techniques, the sample 

is stabilized in a manner that slows or reduces the damaging effect of the probe. 

The use of visible light is perhaps the most widely utilized method for bioimaging, 

where photons with wavelengths of 400 to 700 nm pass through the sample to 

transmit information onto a CCD or the eyes of the observer. The popularity of 

visible light microscopy (VLM) stems from its general ease of use and photons 

within the visible range are widely considered to be “non-damaging” to biological 

samples. Labeling is possible through the use of fluorescent probes (3), and 

fluorescent protein fusions can allow for tracking single molecules (4, 5) or the 

expression of protein copies produced from an organism (6-8). In these cases 

however, the molecule or protein of interest must be known and available for 

targeting by a label. Label free imaging of biological structures can be achieved 

through Raman microscopy techniques, where the specific vibrational state of the 

molecule of interest can be used as a source of signal for imaging (9, 10). A 
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disadvantage of the use of photons in the visible range is the diffraction limited 

resolution of the technique to approximately 200 nm (11, 12). Instrumentation 

and computational advances have resulted in so called “super-resolution” VLM 

techniques where the positions of fluorophores can be determined, in some ideal 

cases, to below 20 nm spatial resolution (13-16). 

To overcome resolution limitations of visible light, the wavelength of the photons 

used can be lowered to reduce the diffraction limit of the technique. The use of x-

rays have a long history of use for imaging biological structures, and are typically 

broadly classified as soft (2-4 nm) or hard (less than 1 nm )depending on their 

wavelength (17). Soft x-ray microscopy and tomography has been used to image 

whole cells in liquids and ice microns in thickness and with tens of nanometers 

spatial resolution (18-22). Hard x-rays are most commonly used in 

crystallography, representing by far the bulk of solved protein structures (23-25). 

X-rays however are ionizing radiation sources and will damage biological 

structures (26). Ultra-bright x-ray sources have been used in so called diffract 

before destroy experiments but are intrinsically destructive and cannot visualize 

dynamics (27-29). 

Other modalities outside photons can be used for imaging, such as the use of 

ions in secondary ion mass spectrometry (SIMS) (30). In this technique ions are 

used to sputter fragments of the sample of interest which is delivered to a mass 

spectrometer to gain chemical information about the sample (31, 32). Other 

techniques for imaging biological samples include atomic force microscopy (33), 
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neutron scattering (34), and nuclear magnetic resonance (35). Imaging with 

electrons is also possible and has recently gained a large amount of interest for 

imaging biological samples.  

2.2 Electron Microscopy 

A wide range of imaging strategies exist for imaging biological samples from the 

atomic to multicellular scales. However, no one imaging technique is capable of 

characterizing structures and phenomena at every spatial and temporal scale. 

Rather, each technique typically covers one part of the landscape, where 

techniques often overlap each other to some degree. Classically, the use of high 

energy electrons to form projection images of thin samples provides images with 

spatial ranges from angstrom to microns, and temporal resolutions of 

milliseconds and greater. For biological applications, transmission electron 

microscopy has filled a niche for angstrom and nanometer level interrogation of 

proteins and cell ultrastructure (36-40).  

2.2.1 Transmission Electron Microscopy 

Generation of electrons from cathodes in vacuum tubes has been known since 

the late 1800s, although the development of electromagnetic lenses for focusing 

were not developed until the first generation of electron microscopes in the 

1930’s (41-43). Modern day transmission electron microscopes (TEMs) generate 

electrons from 30 kV to 300 kV and can contain advanced optics for aberration 

correction allowing for atomic scale imaging of ideal samples (41). A general 
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overview of a TEM is shown in Figure 2.1a detailing the focusing of electrons 

onto a sample and image formation on a detector below the sample. As electrons 

interact strongly with matter the inside of the microscope column must be 

maintained at high vacuum to prevent extraneous scattering of electrons with gas 

molecules (41). A series of mechanical and ion pumps are used to maintain the 

vacuum of the column around 10-6 mbarr at all times (41). Additionally, physical 

lenses cannot be used for electron focusing as they would absorb the electrons 

as they pass through. As a result, electromagnetic lenses are used which create 

an electric field. Electrons traveling through these fields experience a Lorentz 

force which can focus the electron beam by tuning the strength of the electric 

field (41). For TEM imaging, condenser lenses above the sample focus the 

electrons onto the sample as a broad, parallel illuminating beam. An objective 

lens after the sample focuses electrons scattered by the sample and projection 

lenses focus focused electrons onto a viewing screen or camera at the desired 

Figure 2.1: a) Simplified illustration of a transmission electron microscopy depicting the route of electrons 
as they are emitted from the electron source and pass through a sample and transmit information to the 
image plane. b) A phase contrast transmission electron microscope image of O. tauri imaged with 
cryogenic electron microscopy. 
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magnification, either on the image plane for real space imaging or the back focal 

plane for diffraction imaging. Alternatively, a convergent electron beam may also 

be used to perform scanning transmission electron microscopy. The image 

formation mechanism in this strategy is different and will be discussed in the next 

section. 

When electrons transmit through a sample they can interact, or scatter, with the 

atoms of the sample as they pass through. Whether these interactions happen is 

probabilistic, where the chances of a collision is proportional to the atomic cross 

section (41). While the factors affecting the cross section of a particular sample 

are complex, it can be simply approximated to be related to the energy of the 

electron (in eV), the charge of the electron, the scattering angle, and the atomic 

number of the atoms of the sample (41). Increasing the energy of the electron 

decreases the scattering cross section, while increasing the atomic number of 

atoms in the sample increases the scattering cross section. Coulomb interactions 

between the negatively charged electrons, and the negatively charged electrons 

in atomic orbitals or the positively charged nucleus of the atom dictate the 

scattering interactions of the beam electrons and the atoms in the sample (41). 

Scattering events can be broadly defined as elastic collisions (no energy transfer) 

or inelastic collisions (transfer of energy from the incident electrons to the 

sample). Elastic collisions are typically of most interest for image formation with 

biological samples as inelastically scattered electrons become incoherent and do 
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not contribute to constructive and deconstructive interference at the image plane 

during phase contrast imaging (41). 

Phase contrast imaging entails collecting both the high angle elastically scattered 

electrons and transmitted electrons that do not interact with the sample. 

Electrons which have scattered experience a phase shift where the magnitude of 

this shift is dependent on the angle and type of scattering. When the objective 

lens focuses scattered and transmitted electrons back to the same place on the 

image plane contrast forms as a result of constructive and deconstructive 

interference of the phase shifted electrons with incident transmitted electrons. 

While this technique is advantageous as it uses all of the signal from elastically 

scattered electrons, the magnitude of phase shift is related to the atomic species 

and density of the sample. Because biological samples are primarily composed 

of low z number atomic species they are generally weakly scattering. As a result, 

images of biological samples often have very low inherent contrast in phase 

contrast images, as shown in Figure 2.1b. The recent implementation of reliable 

phase plates, which induce an increased phase shift in scattered electrons, can 

significantly increase the contrast of biological samples in phase contrast imaging 

although they are not yet widely available in all microscopes (44, 45). The 

imaging performed in subsequent chapters of this dissertation show results 

which, unless otherwise noted, do not utilize such phase plate technology. 

Images are ultimately focused by the objective lens onto the image plane. 

Recording images was historically performed with film and then charge coupled 
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device (CCD) cameras. Currently CCDs are the most ubiquitous method for 

image collection, where electrons are collected on a scintillator which converts 

the signal to photons which are then detected by the CCD. Because of this 

conversion (e- to photons to e-) a large amount of signal is lost and noise is 

introduced into the final image. Recently, developments of direct electron 

detectors (DEDs) which directly count electrons at the image plane have 

considerably improved signal collection efficiency and improved image signal to 

noise and contrast (46). While not yet common on all microscopes, their use is 

becoming increasingly common especially for structural biology (46). 

2.2.2 Scanning Transmission Electron Microscopy 

While TEM uses a broadly illuminating beam to collect an image, the electron 

beam may also be focused to a small convergent probe which is the scanned 

across an area of the sample being imaged (47). This technique is known as 

scanning transmission electron microscopy (STEM), where an overview of the 

lens system and path of electrons is shown in Figure 2.2. Condenser lenses 

before the sample focus the electron beam into a convergent probe, generally 

around 2 Å in diameter or less (48, 49). Scattered electrons through the sample 

are collected in bright field detectors (transmitted and low angle scattered 

electrons), and annular dark field detectors (electrons scattered at larger angles) 

(48). For each position that the STEM probe is positioned the signal hitting these 

detectors is integrated and plotted as an intensity value. This is repeated for 
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every pixel position that the STEM probe dwells at as the beam is rastered 

across the sample. An advantage of STEM imaging is that incoherently scattered 

electrons which are scattered to large angles can be detected in a high angle 

annular dark field (HAADF) detector, where the intensity of the signal is directly 

related to approximately the square the z number of the atomic species being 

imaged. In this way, so called “z-contrast imaging” can be performed (48). 

Because the dark field detectors are annular in shape, both dark field and bright 

field information of a sample can be collected simultaneously. Figures 2.2b and 

2.2c show BF and HAADF images of biological cells imaged with STEM depicting 

the contrast that can be obtained with the technique. 

While biological samples are classically imaged with TEM, advantages of STEM 

imaging have been increasingly discussed (50-53). In particular, advantages of 

low convergence angle BF-STEM for very thick, low contrast samples such as 

cells has been reported (54). 

Figure 2.2: a) Simplified illustration of a scanning transmission electron microscope depicting the lens 
system used to project the beam onto the sample and to the detectors below the sample plane. b) Bright 
field scanning transmission electron micrograph of C. metallidurans in a layer of vitrified ice. c) 
Complementary high angle annular dark field scanning transmission micrograph of C. metallidurans in a 
layer of vitrified ice. 
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2.2.3 Electron Spectroscopy 

While the inelastic collisions some electrons experience are not always desirable 

since they contribute to the noise signal of the image and are responsible for 

secondary damage events, they generate valuable information that, if captured 

correctly, can yield information about the atomic species the collision happened 

with. During an inelastic collision, the energy transferred to one of the electrons 

in the atoms orbitals causes it to become excited to a higher energy state or to 

become ejected entirely. When another electron drops in energy to fill the hole 

left over energy is given off which is proportional to the energy difference 

between the orbital hole and the original orbital of the decaying electron. This 

energy is given off in the form of an x-ray, where the energy and wavelength of 

the emitted x-ray corresponds directly to the atomic orbital the inelastic collision 

originally occurred at. The collection of x-rays emitted during electron irradiation 

is known as energy dispersive x-ray spectroscopy (EDS), a technique that can 

map the atomic composition of the sample.  

Alternatively, the energy lost by the incident electron during an inelastic collision 

is also directly related to the atomic orbital from which the collision occurred at. 

By determining the energy lost by an electron relative to the energy of the 

incident electrons the elemental composition of the sample can be identified. 

Because electron detectors are not directly capable of quantifying the energy of 

an electron, the transmitted electrons are separated with an electromagnetic 

prism prior to collection on a CCD, shown in Figure 2.3a. Electrons are focused 
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at different strengths through the electromagnetic field, where higher energy 

electrons have a larger radius and lower energy electrons have a smaller radius 

(55). The spectrum, shown in Figure 2.3b, on the CCD is normalized to the zero 

loss peak (elastically scattered electrons), where the energy loss of the 

remaining electrons in the spectrum can be determined relative to this zero loss 

peak, in a process known as electron energy loss spectroscopy (EELS). While 

elemental mapping of samples is possible with EELS and has been 

demonstrated with biological samples (56, 57)), the technique may also 

importantly be used to estimate the thickness of a sample. Because the 

probability of an inelastic event is a function of the thickness of the sample, by 

integrating the signal from the zero loss peak (elastic collisions) and the rest of 

the signal from the spectrum (inelastic collisions), the thickness in inelastic mean 

free paths, or the average number of inelastic collisions an electron experiences 

traveling through the sample, can be determined (55). If the general composition 

of the sample is known, the inelastic mean free path can be estimated, and used 

to quantify the thickness of the sample in nanometers (58). 

Figure 2.3: a) Simplified illustration of an electron spectrometer depicting the electromagnetic prism used 
to separate electrons of differing energies onto a CCD detector. b) Typical electron energy loss spectra 
depicting the zero loss peak and plasmon. 
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2.2.4 Cryogenic Electron Microscopy 

Because biological samples are dependent on their hydration for both their 

structure and function, steps for preventing the dehydration of the sample must 

be taken when imaging with TEM. One method for achieving this is to freeze the 

and maintain the sample at cryogenic temperatures so that the ice does not 

sublimate in the column. This is commonly known as cryogenic electron 

microscopy (cryo-EM) (59-61). To prevent the formation of ice crystals during 

freezing which would damage biological structures the sample must be cooled at 

a very high rate to achieve vitrification, producing amorphous ice surrounding the 

trapped sample (59, 62). This is done by rapidly plunge freezing the sample in 

liquid ethane cooled well below its boiling temperature to minimize insulating 

effects from the Leidenfrost effect (59). In recent years cryo-EM has gained 

interest and popularity in conjunction with the development of direct electron 

detectors which drastically improve the contrast and signal to noise ratio of 

biological samples. The structures of difficult to crystalize proteins have been 

determined with single particle imaging techniques and the structure of 

macromolecular complexes have been solved using in situ cryo-EM tomography 

and subtomogram averaging of whole cells (63). 

While cryo-EM techniques have gained enormous popularity in recent years for 

its ability to resolve the structure of proteins (64), viruses (65, 66), and whole 

cells (67) at high spatial resolutions, it is mostly limited to observing static 

processes. Time resolved studies can be performed by stimulating a reaction and 
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freezing samples at different time points within the dynamic process (39), but 

high temporal resolutions are not possible and observations of physiological 

behavior occurring in the same cell or sample are not possible. As such there is a 

need for an imaging technique which provides high spatial and temporal 

resolution for samples within their native hydrated state. 

2.2.5 Liquid Cell Transmission Electron Microscopy 

Imaging liquids in a transmission electron microscope poses unique challenges 

to maintaining the integrity of the liquid sample under the high vacuum 

environment of the column. Typically, strategies for imaging liquid or humid 

samples entail either trapping the sample within a hermetically sealed chamber 

containing electron transparent windows or using a differential pumping system 

to allow for higher pressures around the sample region compared to the rest of 

the column (68). The first demonstrations of both of these techniques were 

demonstrated over 70 years ago, demonstrating the potential for the technique 

(69, 70). However, limitations with instrumentation limited the scope of questions 

which could be answered, and it was not until advances in microfabrication 

techniques allowed for the production of uniform, very thin free standing 

membranes that the potential of imaging liquids in hermetically sealed 

environments was realized (71). Additionally, advances in vacuum technology 

has improved the ability to maintain high pressure regions within the otherwise 

ultra-high vacuum environment of the TEM column, now commonly referred to as 

environmental transmission electron microscopy (ETEM) (68, 71, 72). While 
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ETEM has been used successfully to image hydrated, or humid, samples the 

pressures available are only in the mbar range (72). As the physiological and 

morphological behavior of biological samples are intrinsically related to their level 

of hydration, a technique which maintains the complete hydration of the cell or 

protein is preferable. As such, while ETEM can be used to image biological 

samples it seems advantageous to use a closed cell system for imaging cells, 

proteins, and complexes.  

A number of different closed cell systems have been developed which may be 

broadly classified as either static or dynamic flow cells. Static cells trap a liquid 

sample between two electron transparent membranes, and achieve hermeticity 

by completely sealing the liquid volume within a chamber. The earliest 

demonstration of a static liquid cell used nitrocellulose films as the electron 

transparent membrane (70). With the reintroduction of the technique in the early 

2000s (71) the most commonly used electron transparent membrane material is 

silicon nitride, used for its ease of fabrication on thick silicon support substrates. 

A number of various systems utilizing silicon nitride membranes on a silicon 

substrate in a closed static liquid cell system have been described in literature 

with applications in cell biology (73-75), electrochemistry (76), and nanomaterials 

(77). Sealing of these devices is often achieved using an adhesive to glue the 

upper and lower substrates two each other, forming the liquid volume. Other 

unique solutions for trapping liquids entail creating chambers within the silicon 

nitride itself (78, 79), or within channels formed within a channel entirely within a 
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silicon nitride film (80, 81). The inability to exchange the liquid sample, whether 

introducing a stimulating reagent to trigger a reaction or physiological change or 

replacing media as components are consumed by growing cells, limits the scope 

of science which can be done with these devices. In particular for whole cell 

imaging, the rapid depletion of the surrounding media and buildup of toxic 

metabolic byproducts can result in organisms entering a physiological state that 

is not representative of native conditions. 

The most common static cell regime outside these silicon nitride liquid cells is the 

use of graphene to trap small volumes of liquid between sheets of graphene (82). 

The pi bond stacking and van der Waals between the adjacent sheets is strong 

enough to hermetically seal the liquid sample trapped between the layers (83). 

These so-called graphene liquid cells have been used to image nanomaterials 

(82, 84-86) in addition to biological samples included cells and protein complexes 

(87-90). Graphene is advantageous as the atomically thin layers provide very 

little extraneous electron scattering when compared with thicker silicon nitride 

membranes, improving signal to noise, contrast, and resolution. Furthermore, the 

potential for the graphene to act as a radical scavenger and somewhat reduce 

the effect of radiolysis effects in a liquid sample has been proposed (91). While 

the fully effects are not well known, effects of a confined environment on 

biological samples may have an effect on the organisms growing within it. The 

inability to flow fresh, stimulating media or sample to initiate a dynamic reaction is 

also difficult or not possible with graphene liquid cells. 
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Dynamic flow holders are similar to static systems which use silicon nitride 

membranes on a silicon support to hermetically seal the liquid sample, but also 

include microfluidic tubing and channels to allow for the delivery of liquid sample 

to the devices being imaged. Commercial solutions for these holders exist, where 

flow is often delivered to the tip of a TEM holder where it fills a hermetically 

sealed chamber. Some of this liquid then finds its way in between the nanofluidic 

devices containing the electron transparent membranes so that imaging may be 

performed. Other custom build solutions also exist, often designed so that flow is 

channeled directly into a nanofluidic channel through vertical flow channels on 

the bottom of the devices (92-95). The advantage of these designs is that the 

liquid sample is forced to flow directly in between the devices and to the imaging 

region. In other regimes a considerable bypass channel which can be microns in 

width exists allow for sample to flow around, rather than through, the imaging 

devices. However, holders utilizing this design are not currently available 

commercially, and their implementation remains challenging and requires difficult 

fabrication and wafer bonding techniques. As such, the majority of existing 

literature on LC-TEM has been published with commercially available solutions 

which deliver liquid sample to the hermetically sealed chamber containing the 

nanofluidic devices, some of which finds its way in between the devices and to 

the imaging area and some of which flows around the devices entirely and flows 

out the exit port for the holder. 
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While the applications of LC-TEM cover a broad range of applications, the 

characterization of nanomaterials and the nucleation of nanoparticles represents 

perhaps the bulk of published literature with the technique (96-101). One side 

effect of the high energy electrons used for image formation is inelastic scattering 

events which transfer energy to the sample being imaged. These energy transfer 

collisions result in bond breaking (radiolysis) and the ejection of orbital electrons 

from their shells, known as secondary electrons (41). In liquids, the bond 

breaking of water molecules during electron irradiation causes the formation of 

highly reactive radical species (102, 103). These radical species can then reduce 

metal salts in solution, causing the nucleation and growth of nanoparticles (97). 

Using the electron beam as a “reducing agent” has been used to study both the 

underlying mechanisms of nucleation and growth kinetics, but also to understand 

the chemistry changes of liquid samples as a result of radiolysis (101, 104, 105). 

In addition to the precipitation of particles, electron beam driven chemistry 

changes in a solution has also been shown to cause dissolution of particles via 

radiolysis induced chemical etching (106-108). LC-TEM has also been used as a 

characterization tool for organic based materials such as metal organic 

frameworks and polymers (109, 110). 

LC-TEM has also been demonstrated for biological samples from proteins (111-

114) to whole cells (115). Both prokaryotes (74, 116, 117) and eukaryotes (118) 

have been imaged with LC-TEM, and although mammalian cells have been 

imaged the large fluid thicknesses necessitated by their size results in images 
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which are low in contrast (119-121). As electron beam damage is a concern for 

biological samples, many reports of cells imaged with LC-TEM are fixed with a 

crosslinking agent such as glutaraldehyde in order to stabilize the cell from the 

effects of secondary damage (121). Due to the low intrinsic contrast of whole cell 

samples and the compact nature of proteins within the cell, identifying the 

positions of biomolecules of interest requires some labeling with a reporter that 

provides high contrast. This has been demonstrated with LC-TEM using antibody 

functionalized with quantum dots or nanoparticles (74, 121). Quantum dots have 

some advantage as they allow for the potential for correlative fluorescence 

imaging, although labeling is generally constrained to membrane proteins which 

have epitopes for antibody binding located outside the cell. Attempts to negative 

stain biological samples in liquids has also been described (117), although the 

viability of cells under these conditions is the subject of some disagreement (122, 

123). 

While LC-TEM holds great potential for visualizing dynamics of biological 

processes at high resolutions, a number of factors constrain the scope and 

application of the technique. Several of these limitations are a product of the 

design and application of the instrumentation used to hold the liquid samples, 

while the physical interaction of high energy electrons with the sample and the 

uncertainty of the fate of damage byproducts confounds interpretation of 

observed dynamics. Instrumentation limitations include limited imaging area, 

thickness variability, and bypass of flow. Typical commercially available 
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nanofluidic devices contain a single silicon nitride window, which when 

assembled in the holder with a sample results in an imaging region which can be 

30x30 um to 50 x 50 um depending on the width of the windows (75). The silicon 

nitride membranes used for imaging are typically 10-50 nm in thickness and have 

a high degree of flexibility (75, 78). When placed inside the column of a TEM the 

pressure differential between the column (generally around 10-6 mbarr) and the 

liquid sample (at atmospheric pressure) results in a significant outward bulging of 

the silicon nitride membranes and can be as much as 500 nm to 1 um in the 

center of the imaging area (124). As a result, imaging is practically limited to the 

corners of the electron transparent membranes, further reducing the area 

available for performing imaging experiments in. As a result of the limited area for 

imaging, in order to perform experiments to generate statistics and demonstrate 

reproducibility multiple samples must be assembled. While spacer material 

patterned on the surface of the devices can be used to define the minimum 

thickness of the liquid volume (75), in practice the actual liquid thickness has a 

tendency to be highly variable. Environmental contaminants from the sample or 

out of the air can rest on the surface of the device, and if large enough can 

dictate the minimum thickness of the fluid cell. The sample itself can additionally 

cause thickness variability if the sample is nonhomogeneous and have a 

tendency to clump together. Clumping and variable cells sizes are typical of 

biological samples, and duplication of liquid thicknesses tend to rely more on luck 

than skill as the devices are currently designed. 
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Finally, while most commercial holders allow for the flow of fresh sample or 

solution to the imaging area, the introduction of samples such as cells or particles 

to the imaging area is complicated by a large flow bypass channel caused by the 

geometry of the devices. While the spacing between the devices is typically at 

maximum 1-2 um and ideally closer to several hundred nanometers, the channel 

around the devices between the sealing o-rings and the walls of the holder tip 

that allows for liquid flow can be tens to hundreds of microns in width and depth. 

In addition to limited how samples can be loaded in the devices (large samples 

cannot be practically flowed into the imaging area) it constrains the ability to 

perform dynamic experiments such as the growth or coalescence of 

nanoparticles from the mixing of two separate sample solutions. While some 

commercial holders claim to have the ability to flow multiple samples from two 

inlet lines they combine just before they enter the hermetically sealed chamber 

(125). Experiments utilizing these holders are not able to visualize true time zero 

nucleation events, and uncertainty about “filtering” effects of the bypass channel 

are unknown as the liquid from this channel has not been analyzed for any of 

these experiments (125). Overcoming these design limitations will require 

redesigning the holders and the devices used for LC-TEM imaging. 

In addition to the geometric limitations imposed by the instruments used with LC-

TEM, the physical interaction of the electron beam with the liquid sample can 

create image artifacts and confounds interpretation of experiments and images. 

When liquids are irradiated with high energy electrons some of the energy is 
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deposited into the sample during inelastic collision events. These collisions can 

eject orbital electrons and break atomic bonds through radiolysis (102). The 

secondary electrons ejected into the sample, although lower energy, can also 

undergo further inelastic collisions and continue to break atomic bonds. For pure 

water, primary radicals are formed which then react with each other and other 

water molecules and reach a steady state equilibrium where the concentrations 

of these radicals is dependent on the incident dose deposited by the electron 

beam (102). These radical species are: 

𝐻𝐻2𝑂𝑂 →  𝐻𝐻3𝑂𝑂+,𝑂𝑂𝐻𝐻∙, 𝑒𝑒𝑎𝑎𝑎𝑎− ,𝐻𝐻∙,𝑂𝑂𝐻𝐻−,𝐻𝐻2𝑂𝑂2,𝐻𝐻2,𝐻𝐻𝑂𝑂2∙ 

The rate of production of these species during irradiation is dependent on the so 

called G-value for each species, defined as the rate of generation per 100 eV of 

deposited energy (102). While real samples are typically more complex 

containing solutes of different molecular species, as long as the sample is at low 

concentrations it is generally considered that the bulk of radicals are from the 

solvent (102). In the simple case of a metal salt, these radical species can 

reduce the solute ions in solution, which can then precipitate depending on the 

chemistry of the solution (126). Understanding the interaction of these radical 

species with the sample is critical for accurate interpretation of LC-TEM results. 

While not well understood, the charging of the silicon nitride membranes under 

electron irradiation has also been discussed as a damage mechanism for liquid 

samples (127). Especially for biological samples for which the radical species 

can react strongly with proteins, DNA, and other biomolecules to alter the 
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organism or structure from its native state, the role of electron irradiation on 

chemistry changes in the sample must be considered when attempting to 

observe physiological behavior. 

2.3 Microfabrication 

While microfabrication techniques have had perhaps the greatest impact on the 

semiconductor industry for manufacturing computer chips and processors, it is 

also used to great effect for creating microfluidic and microelectromechanical 

(MEM) devices (128). These devices often have features or structures at the 

micron to nanometer scale, where the microfabrication processing allows for a 

high degree of control and reproducibility (129). Applications of these devices are 

broad including sensing pressure (130, 131), orientation (132), or biological 

molecules (133-136). In addition to sensing applications microfabrication can be 

used to generate microfluidics with channels of reproducible sizes and shapes 

(137, 138). Fabrication typically entails repeating steps of patterning, etching, 

and bonding to create the desired design (129). Microfabrication is typically 

performed in a clean room to reduce the amount of environmental contaminants 

and improve reproducibility of each microfabrication step (128). 

2.3.1 Photolithography 

Creating reproducible designs across a large number of devices with high 

throughput requires a reliable method for accurately producing the same pattern. 

Photolithography is a patterning method which utilizes ultraviolet (UV) light to 
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pattern an organic polymer, known as a photoresist, with the desired design 

using a photomask (129). The basic principle of photolithography is shown in 

Figure 2.4, highlighting exposing, soft baking, and developing the photoresist on 

a silicon wafer (the most typical substrate used in microfabrication).  

The first step of photolithography is to ensure the substrate surface is clean and 

passivated for proper adhesion of the photoresist. Cleaning can be performed 

with a strong oxidizer to remove metal and organic contaminants, followed by a 

bake at temperature to drive off adsorbed water (129). Depending on the 

application of the devices the substrate can also be etched in hydrofluoric acid 

(HF) to remove the native oxide layer that naturally forms on the surface of 

silicon. Often substrates are spin coated with a thin layer of hexamethyldisilane, 

which ensures the surface of the substrate is hydrophilic for optimal resist 

adhesion (128). 

After cleaning the photoresist can be coated onto the substrate, usually through 

spin coating. This involves spinning the substrate at high speeds with the 

photoresist on the surface, where the resist is spread evenly across the substrate 

surface (128). Thickness of the resist layer is dependent on the viscosity of the 

resist and the speed the substrate is spun at during coating and can be tuned 
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based on the needs of the devices being fabricated (128). After the resist is 

layered on the resist it must be soft baked to drive off the solvent in the 

photoresist. The time and temperature of this soft bake is dependent on the 

amount of solvent in the photoresist and the thickness of the resist, and is 

generally done at temperatures less than 120oC which is the temperature that 

polymerization of most photoresist occurs at (128). The resist must then be left to 

rest at room temperature, as swelling often occurs as the resist rehydrates based 

on the relative humidity of the clean room (128). 

Patterning of the resist is done by aligning a photomask with the substrate and 

exposing with UV to crosslink the photoresist (128). Photomasks are typically 

designed using computer aided design software and printed using a system 

which can directly print patterns onto a photoresist (128). The photoresist on the 

Figure 2.4: a) A photoresist layer (purple) is deposited on the surface of the wafer (orange and grey) 
through spin coating. b) A photomask is aligned over the wafer and the photoresist is irradiated with ultra 
violet light. Regions of the photomask with chromium (black) block the ultraviolet light from crosslinking 
the photoresist in specified areas. c) Crosslinked photoresist (light purple) from ultraviolet exposure may be 
targeted with a developer. d) After developing resist features are left behind on the wafer. 
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mask is developed exposing a layer of chrome, which is etched away using a 

chrome etchant (128). The photomask is then used to copy the design to the 

layered photoresist on the desired substrate, where UV exposure on the 

substrate photoresist only occurs where the chrome in the photomask has been 

etched away, allowing for transmission of UV to the photoresist. Photoresist that 

has been exposed by UV becomes crosslinked which defines the region of the 

photoresist which is removed during the development step (128). 

Photoresists can be classified as positive or negative, where crosslinked 

photoresist is removed in positive resists and non-crosslinked photoresist is 

removed in negative photoresists (128). Figure 2.4 is an example of a positive 

photoresist. Developers are typically specific to the photoresist, positive or 

negative, that is being developed where the developing time and resolution is 

dependent on the thickness and type of resist used. After developing the 

photoresist it can also be hard baked at temperatures above 120oC, to crosslink 

and stabilize the remaining photoresist but is dependent on the application of the 

patterned resist. In this way, highly reproducible designs can be patterned onto 

substrates (129). 

2.3.2 Deposition and Thin Film Patterning 

Often MEMs applications require that additional material to be deposited and/or 

patterned on the devices being fabricated. These films may act as conducting, 

insulating, or adhesion layers and can be crystalline or amorphous. Typically, 

deposition is achieved through either chemical vapor deposition (CVD), or 
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physical vapor deposition (PVD) (128). PVD is commonly used to create thin 

films of metals and is achieved by using a solid starting material (often referred to 

as a target) to create a vapor phase which is then deposited onto the substrate 

where it is converted back into a solid phase as a thin film (128). A number of 

different PVD techniques exist including electron beam deposition, thermal or 

evaporation deposition, and sputter deposition among others (128).  

Sputter deposition entails creating a glow discharge plasma between two 

electrodes in a vacuum (139). To form a glow discharge plasma a partial 

pressure of an inert gas, such as argon, must generated in the chamber. 

Naturally, some fraction of this gas will be ionized by cosmic rays, such that 

when a voltage is applied to the chamber electrodes and an electric field is 

generated between them, the positively charged Ar+ cations accelerate towards 

the cathode and negatively charged e- anions accelerate towards the anode 

(140). At sufficient voltage and chamber pressure the mean free path of the ions 

allows them to gain enough kinetic energy during their acceleration that they 

collide with other uncharged gas molecules in the chamber and ionize them to 

amplify the number of ions in the plasma (141). This cascade effect generates a 

plasma which can be sustained and used to sputter a desired target material, 

which is placed at the surface of the cathode. Ar+ cations colliding with the 

surface of the target at the cathode can knock atoms from the surface of the 

target which are then deposited on the substrate at the anode (140). While 

effective, glow discharge sputtering often has very low sputtering rates as the 
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distance between the electrodes results in low plasma density at the surface of 

the cathode causing slow deposition rate (140). By placing magnets in the 

cathodes such that one pole is at the center of the cathode and the opposite pole 

is a ring surrounding the outside of the cathode, a magnetic field is generated 

parallel to the surface of the cathode (140). This magnetic field can trap electrons 

at the surface of the cathode and increases the plasma density to increase 

sputtering rate. In this way, films hundreds of nanometers thick with very small 

grains and low surface roughness can be created. 

Patterning a thin film can be achieved through two different techniques known as 

lift-off deposition or etch-back deposition (129). In the latter, the thin film is first 

deposited on the wafer at the desired thickness. Then a sacrificial layer, such as 

a photoresist, is deposited on top of the deposited thin film and pattered using 

photolithography with the desired pattern. The wafer is subsequently etched with 

an etchant that targets only the thin film, where the sacrificial layer protects the 

Figure 2.5: a) Lift-off deposition starts by coating a wafer (gray and orange) in photoresist (purple). b) The 
photoresist is patterned with the desired design. c) A thin film of the desired metal (yellow) is sputtered 
onto the wafer. d) The wafer is placed in an organic solvent to remove the photoresist and thin film layer on 
top of it, leaving behind the thin film in regions which did not have photoresist. 
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thin film underneath it and the thin film is etched away wherever it is not 

protected by the patterned layer (129). After etching, the sacrificial layer is 

stripped leaving only the patterned thin film behind, shown in Figure 2.5a. 

Disadvantages of etch-back deposition include undercutting of the sacrificial 

layer due to the isotropic etching behavior of most liquid etchants, and depending 

on the thickness of the film this under etching can become quite significant and 

can affect the functionality of the final device depending on application. Lift-off 

deposition is effectively a reversal of etch-back, where the sacrificial layer, 

typically a photoresist, is coated on the surface of the wafer and patterned with 

the desired design (129). This is often done with a negative resist which results in 

either a vertical or inward tapered resist profile (142). The thin film is then 

deposited on top of the wafer to the desired thickness, where the negative profile 

of the resist disconnects the thin film deposited on the wafer from the thin film 

deposited on the resist surface. The resist is later removed with an organic 

solvent and the thin film deposited on the surface of the wafer is left behind, 

depicted in Figure 2.5b. Disadvantages of lift-off deposition are incomplete 

removal of the sacrificial resist, redeposition of thin film which has been lifted off, 

and so called “dog-ears” which occur when the deposited film leaves vertical 

structures which have deposited on the side walls of the sacrificial resist layer 

(128). 
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2.3.3 Etching 

Often microfabrication processes require that material is removed to form 

channels, or patterned features on the surface of the device. This can be done 

chemically with liquid etchants (known as wet etching) or physically with a 

plasma (known as dry etching). Wet etching is perhaps the most versatile, where 

a large number of liquid etchants have been described for various conductive 

and nonconductive materials (143). While wet etching of metal thin films is 

important for etch-back patterning, the etching of silicon especially important for 

microfabrication of both MEMs and semiconductors.  

Two of the most common wet etchants used is the processing of silicon wafers 

are HF and potassium hydroxide (KOH). HF is one of the few compounds that 

etches silicon oxide layers, which naturally form on the surface of silicon 

substrates under atmospheric conditions (144). Especially for electronics, the 

removal of oxide layers is important as it can also act as an insulator between 

features on the device (145). KOH is a commonly used etchant of silicon due to 

its anisotropic etching behavior, where the [111] plane of the crystalline silicon is 

etched at a considerably lower rate than the other planes (146). In a [100] 

oriented silicon substrates this anisotropic etching results in pyramidal shaped 

etching structures and depending on the orientation of the substrate other 

structures such as vertical channels can be formed with KOH etching. While a 

wide number of other wet etchants exist for various metals (143), describing each 
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is beyond the scope of this introduction. The ones commented on have relevance 

to the work performed throughout the rest of this thesis. 

Dry etching can also be used to etch substrates through a process known as 

reactive ion etching (RIE). A plasma is generated in the chamber, where the gas 

used for plasma formation is dependent on the substrate being etched (147). For 

example, sulfur hexafluoride (SF6) is typically used for etching silicon, where the 

ions in the plasma are accelerated towards the substrate and etching occurs 

through sputtering or chemical etching. While useful, RIE etching of silicon is only 

typically on the order of microns deep and the aspect ratio of features etched is 

low (147). Deep reactive ion etching (DRIE) is a dry etching method that creates 

deep trenches is silicon with high aspect ratio side walls (148). This is achieved 

by alternating etching and passivating steps, where silicon is etched with an SF6 

followed by a deposition step of C4F8 which deposits as Teflon on the substrate 

(148). Teflon deposited on the vertical sidewalls during etching does not etch as 

fast as the Teflon at the bottom of the etching trench, so that the depth of the 

channel is increased at a significantly faster rate compared to the etching of the 

side walls (148). This process is known as the Bosch process (named for the 

company that discovered and patented the technique) and it can achieve 

features with depths of 200 um or greater with nearly vertical sidewalls. 

2.3.4 Wafer Bonding 

Vertical packaging of devices through wafer bonding is an important process for 

MEMs fabrication by creating hermetic sealing of chambers or channels. A 
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number of different strategies can be used for bonding depending on the surface 

properties and identities of the films being bonded together (149-154). Direct, 

anodic, and eutectic bonding are three types of bonding which can be used to 

provide wafer level bonding. Each technique has different requirements for 

surface treatment and roughness of the films being bonded together, and each 

has advantages in the strength and utility of the bond being formed. 

Direct bonding between films occurs when the atoms of adjacent wafers are 

brought into very close contact and elevated temperature (155). Covalent 

bonding forms between the molecules and adjacent films, resulting in strong, 

hermetic bonding between the two films (128, 156). The effectiveness of direct 

bonding is highly dependent on the surface roughness of the two films being 

bonded together, where a rough surface will not allow close enough proximity to 

form the covalent bonds necessary for bonding to occur (157). Plasma activation 

of silicon surfaces has been demonstrated to allow for direct bonding at lower 

temperatures (158), advantageous for processes which require low temperatures 

so as not to affect other structures on the wafers. However, the techniques 

sensitivity to surface roughness requires the ability to polish or obtain films with 

atomic level smoothness (159). 

Anodic bonding is the process of bonding two wafers by creating a potential 

across the gap between the wafers resulting in their bonding. This is commonly 

done between silicon and glass, where the glass substrate is a borosilicate glass 

(such as pyrex) importantly containing sodium ions (160). When the wafers are 
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brought into contact and a field is applied the sodium ions in the borosilicate 

glass diffuse towards the cathode and oxygen ions diffuse towards the anode 

and bond interphase (161). The diffusion of oxygen to the bond surface results in 

covalent bonding between the borosilicate glass and silicon wafer (162). While 

bonding between wafers sputter coated with thin borosilicate glass layers, 

electrical breakdown of the glass film with high enough potentials can cause 

bond failures (163, 164). While the technique is less sensitive to surface 

cleanliness than wafer bonding, voids in the film can still be formed by surface 

contaminants. 

While two metal films can theoretically be heated to their melting point and 

pressed together to cause sealing, the temperatures required to reach the 

melting points of most of the films and substrates used in microfabrication make 

this method impractical. Eutectic systems are alloys where the combined melting 

point of two materials is considerably lower than the melting points of each 

individual material (128, 165). Examples of eutectic systems are gold-silicon, 

copper-tin, and aluminum-germanium (166). When films on adjacent wafers are 

brought into contact with high pressures and a temperature above the eutectic 

point of the two films, melting of the films occurs at their junction where the 

wafers can be effectively “welded” together (167). Eutectic bonding has less 

sensitivity to surface roughness but typically requires higher temperatures and 

pressures than anodic and direct bonding. 
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The following chapters combine the techniques and strategies described here to 

create new instrumentation for use in conjunction with liquid cell transmission 

electron microscopy towards visualizing biological dynamics in a native hydrated 

environment. 
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3 Chapter 3: A Holistic Approach to Structural Biology - 
Characterization at the Atomic and Cellular Level 

3.1 Introduction 

Understanding the structure-function relationships of biomolecules, 

macromolecular complexes, and even cellular ultrastructure is an important step 

towards harnessing biological machinery for industrial purposes or medical 

applications. TEM imaging of biological samples has been important in 

determining the structures of proteins (64), viruses (65), and whole cells (63). 

While a number of different structural techniques exist, from single particle 

analysis, to crystallography and whole cell tomography, ideally a holistic 

approach involving all approaches from single molecule to whole cell can be 

used to provide complete context of a system or pathway. This chapter describes 

atomic resolution characterization of a cyanobacterial protein and whole cell 

imaging and tomography for ultrastructure characterization. 

3.2 Cell Free Expression of Soluble Protein for 2D 
Crystallography 

The vast majority of known protein structures to date have been solved with x-ray 

crystallography, although membrane proteins have proved challenging to 

crystalize and some proteins do not form large stable crystals required for the 

technique. 2D electron crystallography and single particle techniques using 

transmission electron microscopy have gained popularity for their ability to 

determine the structures of difficult to crystalize proteins. For any of these 
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techniques, a large amount of purified protein is needed to generate the data 

needed to solve a structure. In vivo expression using E. coli is commonly used 

for producing large quantities of proteins from a plasmid, but is limited in post-

translational modifications and can only synthesize proteins which do not affect 

the viability of the organism (168, 169). Furthermore, the process is often time 

intensive and can take days to weeks for production (170). For structural biology, 

crystallization and structure determination is challenging and difficult process 

which requires large amounts of protein. As such there is a need for a high 

throughput, fast method for producing large quantities of protein for crystallization 

trials and data generation.  

Cell-free protein expression effectively entails harvesting the intracellular 

machinery and adding a plasmid containing the gene to be expressed. While not 

a new technique, it has classically been difficult to produce bulk quantities of 

protein on the same scale as is possible with in vivo methods (171). Recent 

advances however have allowed for production of tens of micrograms of protein 

from a single reaction that allows for sufficient biomass for structural studies. 

While an advantage of cell-free expression is the extract used can be from the 

same system as the desired protein (prokaryotic, eukaryotic, insect, ect.), the 

development and commercialization of a wheat germ extract by Yaeta Endo has 

lowered the barrier of entry to the field considerably (172).  

The general process for cell free expression using a wheat germ extract kit from 

Cell Free Sciences is outlined in Figure 3.1. The gene of interest is first cloned 
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into the pEU vector, which has been optimized for translation with wheat germ 

extract, using a Gibson assembly. During insertion, terminal His and FLAG tags 

are added to the protein sequence to aid in purification and crystallization. The 

plasmid is transformed into E. coli, successful transformant colonies are picked 

Figure 3.1: Cell free protein production entails inserting the gene of interest into an expression 
vector which is amplified using E. coli. Amplified plasmid is transcribed to form the mRNA 
template, which is transferred to the bottom of a bilayer reaction containing wheat germ extract. 
The produced protein is purified and can be used for a number of downstream applications. 
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and cultured in a large volume to amplify the plasmid. The plasmid is then 

harvested from the cells and purified for use. Transcription is performed with the 

SP6 polymerase, and the resulting mRNA is combined with the wheat germ 

extract and deposited beneath a translation buffer in a bilayer reaction for protein 

production. After incubation the protein is harvested and purified using the added 

FLAG or His tags and purity is checked with SDS-PAGE. The final product is 

concentrated for use with structural studies and data collection. Both membranes 

and soluble proteins may be produced with this method as will be described 

below. 

3.2.1 Cell Free Expression of CcmK 

While classically defined as lacking distinct membrane bound organelles, many 

bacteria possess microcompartments with unique functions. Carboxysomes are 

protein microcompartments found in cyanobacteria and other chemoautotrophs 

which help to increase the rate of CO2 fixation by the RuBisCO reaction (173, 

174). While they do not possess a lipid bilayer, the shell of the carboxysome is 

composed of small proteins which give it a faceted polyhedral structure (174). 

Often these structures are icosahedral but can be irregular as well (174). There 

are several different types of carboxysome shell proteins, where the organisms 

Synechocystis and Prochlorochocus produce shell proteins from the ccmk genes 

(173). A single monomer of the protein CcmK is ~10kDa and known to be 

hexameric and it is thought the close packing of these proteins forms the faceted 

planes observed in carboxysomes (173, 175). The ordering of the proteins has 
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allowed for 2D crystallization of the protein, where structures have been 

determined with electron crystallography (176, 177). This makes CcmK ideal to 

test the ability for protein produced via cell free expression to be crystalized and 

imaged with electron microscopy for structure determination. 

The ccmk gene from Prochlorococcus marinus MIT 9313 was amplified and an 

N-terminal 3X-FLAG tag and a C-terminal 10X-His tag were added to the gene. A 

second product was made with the N-terminal 10X-His tag but without C-terminal 

FLAG tag. The PCR product was then cloned into the Cell Free Sciences pEU 

vector using a Gibson assembly, amplified, and purified. The ccmk gene in the 

pEU vector is then expressed using SP6 polymerase to produce the mRNA 

transcript for translation. Because CcmK is not a membrane protein it can be 

synthesized directly with a bilayer transcription reaction. The translation mixture, 

consisting of wheat germ extract, creatine kinase, the mRNA transcription 

product is gently pipetted underneath a translation buffer in the well of a 24-well 

plate. The reaction was incubated at 15oC for ~20 hours before harvesting the 

protein product. CcmK is purified using magnetic beads functionalized with anti-

FLAG antibodies for FLAG purification or Ni+NTA for HIS purification. While 

FLAG purification typically gives better purity and yield, the presence of the 

FLAG tag on the C-terminus may potentially prevent crystallization. Figure 3.2a 

shows an SDS-PAGE gel of the purity of the translation products through the 

steps of FLAG purification. The final concentrated product has good purity, where 

the second band is the excess FLAG that is used during the elution step. Figure 
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3.2b shows an SDS-PAGE gel showing the purity of the CcmK protein 

throughout His purification. The concentration of imidazole in the wash buffer 

was 50 mM, which appears to be enough to minimize non-specific binding 

proteins but not too high to prevent binding of the His tagged CcmK. 

Figure 3.2: a) SDS-PAGE gel of CcmK during FLAG purification, bands in the final fraction have the 
CcmK protein and leftover FLAG from the elution fraction. b) SDS-PAGE gel of CcmK during His 
purification, the single band in the final fraction shows good purity. c) Image of the crystallization setup 
depicting how the addition of lipid monolayer reduces the surface tension of the aqueous buffer and allows 
for a flat crystallization surface. d) Illustration of the crystallization strategy where the lipid monolayer is 
doped with Ni+NTA groups which bind to the His-tagged CcmK. e) Room temperature bright field STEM 
image of negative stained 2D CcmK crystals. f) Fourier transform of (e) after crystal unbending showing 
13Å resolution reflections (orange arrow). g) Electron density map of CcmK crystals with the known x-ray 
structure overlayed on top of the map. 
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3.2.2 2D Crystallography of CcmK 

Protein crystallization through a lipid monolayer at the air-water interphase can 

aid crystallization of both soluble and membrane proteins which are otherwise 

difficult to crystalize with conventional techniques (178). The His tags engineered 

onto proteins for purification purposes may be leveraged for crystallization, where 

Ni2+NTA labeled lipids doped into a lipid monolayer can bind to His tags to 

promote associating between adjacent proteins (175, 177). An advantage of this 

technique is that it uses small volumes of concentrated protein. Figure 3.2c 

shows 15 uL droplets of concentrated protein (0.5 mg/mL) in Teflon wells. The 

droplet on the left shows the decreased surface tension achieved after adding 2 

uL of a lipid mixture of DOPC:DGS-Ni2+NTA at a ratio of 4:1. The lipids form a 

monolayer at the water air interface with the hydrophobic tails on the air side and 

the polar head groups towards the liquid phase. Figure 3.2d illustrates this 

crystallization strategy, where the His tagged CcmK in solution bound to the 

Ni2+NTA lipids in the monolayer. When the ionic strength of the buffer solution 

was correct, the CcmK proteins in solution orientated into a two-dimensional 

crystal on the surface of the lipid monolayer.  

The crystallization of the proteins in solution can be slow, and often depends on 

the concentration of protein in solution. Incubation can take place from hours to 

days for complete crystallization to occur. In the case of CcmK, the incubation 

required for 2D crystal formation was 13 hours to form large area crystals 

(hundreds to thousands of nm2 in area). After incubation the crystals are 
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harvested with an electron microscopy grid with a carbon film. These films 

typically are natively hydrophobic and may be dropped onto the liquid droplet in 

the wells, where the hydrophobic tails of the lipids will bind to the hydrophobic 

carbon film on the EM grid. The sample was then frozen for cryo-EM studies or 

negatively stained with phosphotungstic acid for room temperature EM analysis.  

Figure 3.2e shows a (contrast inverted) HAADF-STEM image of CcmK crystals 

grown using the method described above. It was found that proteins with the N-

terminal FLAG tag would not crystalize for any of the crystallization conditions 

which were attempted. We suspected that the FLAG tag prevented close packing 

of the protein to form a crystal. As a result, CcmK with only an N-terminal His tag 

was used for crystallization. While it was expected that some non-specific binding 

proteins would not be removed during the purification step, these impurities were 

low enough to not significantly out-compete binding with Ni2+NTA groups on the 

lipid monolayer.  

An advantage of 2D-electron crystallography is that the crystals formed can be 

poorly ordered and still give valuable structural information by using image 

processing (179, 180). While the real space image of the protein crystal is 

typically low contrast and has a high amount of noise, the power spectrum of the 

image shows the structural information in discrete spots from the periodicity of 

the crystal lattice (181). Fourier filtering can be used to remove excess noise 

from the image, at which point crystal defects and lattice distortions are 

observable (181). These distortions can be corrected through a lattice unbending 
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process which uses cross correlation of a theoretical, or measured from a small 

subsection of the image, unit cell to calculate the shift vectors of the lattice 

distortions (181). These distortions can then be corrected for and, through 

iterations, as the lattice is refined the unit cell can be determined more 

accurately. The resulting power spectrum of the refined lattice results in 

diffraction spots which are more focused, and often reflections at higher 

resolutions than were apparent from the original image can be seen. These 

imaging processing tools have been compiled into a single tool for high 

throughput data generation in the 2DX package, which is now part of the Focus 

image processing suite (182-184). The power spectrum of the unbent and refined 

CcmK lattice from Figure 3.2e is shown in Figure 3.2f. The red arrow in Figure 

3.2f highlights the highest resolution reflection at 13Å, which is typically the 

resolution limit for negative stained samples. An advantage over x-ray and 

electron diffraction crystallography which give only amplitude information, is the 

power spectrum gives both amplitude and phase information (179). This 

information is used to create a final projection map of the protein crystal, shown 

in Figure 3.2g. The three-dimensional structure of the protein crystal can also be 

determined if images are collected from multiple tilt angles, where the resulting 

projections can be combined to determine the three-dimensional structure of the 

protein. While only a single 0-tilt projection was collected for this CcmK crystal, 

the measured lattice agrees closely with the known x-ray structure of the protein, 

demonstrating that cell-free expression can be used to produce proteins for 

structural determination through 2D crystallography. While further work to obtain 
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higher resolution structures could have been performed, this was unnecessary 

for CcmK as the structure of the protein had already been determined at high 

resolution with x-ray crystallography. The purpose of this experiment was to 

demonstrate that protein produced with cell free expression could be successfully 

crystallized and the resulting protein structure aligned with existing structures. 

With confidence that the pipeline is capable of producing large quantities of 

proteins with proper folding and post translational modifications structural studies 

can begin on proteins with unknown structure. 

3.3 Cell Free Expression of Membrane Proteins for Single 
Particle Analysis 

Membrane proteins are notoriously difficult to perform structural studies due to 

their insolubility in water without stabilization with detergents. Isolation, 

purification, and crystallization of membrane proteins produced in-vivo from 

organisms is a non-trivial task where the throughput is often reduced due to the 

individual approach required for each membrane protein. Cell free expression 

allows for direct synthesis of the desired membrane protein into a membrane for 

stabilization, where purification to separate from other membrane proteins is not 

necessary. As such, it represents an ideal platform to create biomass for 

structural studies with electron microscopy. 

Triacylglycerols are a class of lipids which have potential as biofuel feedstocks 

and are known to be produced by algae under nutrient limiting growth conditions 

(185). However, their metabolic pathway is not well understood including the final 
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enzyme diacylglycerol acyltransferase (DGAT) which is membrane bound and 

thought to localize to the membrane of the endoplasmic reticulum (186). Towards 

the goal of industrial engineering of algae for biofuel production, the synthesis of 

triacylglycerols and the function of DGAT needs to be better understood, and its 

structure is currently unknown. The ability to produce protein with cell free 

expression for crystallization and structural studies is a critical step in 

characterizing the triacylglycerol synthesis pathway. 

3.3.1 Cell Free Expression of DGAT into Liposomes 

In O. tauri, the gene dgat consists of two exons of length 0.2kB and 1.2 kB. The 

exons were cloned from genomic DNA from the microalgae O. tauri using 

polymerase chain reaction (PCR). The exons were amplified separately to 

remove the single intron, where the exon PCR products are shown in Figure 

3.3a. During PCR the N-terminus was modified with a 3X-FLAG tag and the C-

terminus was modified with a 10X-His tag. The amplified exon fragments were 

gel purified and transferred to the pEU plasmid using a Gibson assembly. The 

resulting plasmid was transformed into E. coli (NEB-10) and streaked onto an 

agar plate with ampicillin for selection of successfully transformed cells. Resulting 

colonies were picked and sent for sequencing to verify integrity of the plasmid 

insert. Successful clones were grown in a large liquid culture to amplify the 

plasmid, and after growth the plasmid was harvested and purified. 

The DGAT gene was transcribed with an SP6 polymerase, and the resulting 

mRNA produced was combined with wheat germ extract and liposomes and 
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placed below a transcription buffer to set up a bilayer reaction. As the mRNA is 

translated the membrane portion of DGAT is synthesized into the included 

liposomes. After incubation overnight, the liposomes with integral membrane 

proteins (proteoliposomes) can be harvested simply by centrifugation and 

washing to remove unwanted soluble proteins. Figure 3.3b shows an SDS-PAGE 

gel of the products showing a final product with good purity. 

After expression, the liposomes were imaged with cryo-EM to observe the size 

and morphology of the produced liposomes. Figure 3.3c shows a cryo-EM image 

of a liposome which has copies of DGAT within the layers. As is seen, the formed 

liposomes are multilamellar. For cryo-EM single particle studies ideally these 

structures will be unilamellar 100-200 nm liposomes. Protein is not clearly visible 

in the liposome membranes in the image in Figure 3.3c, as the 50 kDa protein is 

not large enough to be visible without staining on the CCD the image was taken 

with. Ongoing work is to use a direct electron detector and phase plate to obtain 

Figure 3.3: a) Agarose gel showing exons 1 and 2 of dgat. b) SDS-PAGE gel of DGAT from cell free 
expression and purified with FLAG purification. c) Bright field transmission electron micrograph of 
liposomes containing DGAT. Scale bar is 100nm. 
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images of DGAT with sufficient contrast to perform single particle studies. 

Additionally, crystallization trials will be run to form 2D crystals of DGAT for 2D 

crystallography. 

3.4 Correlating Loss of Structural Information Under Electron 
Irradiation Using 3D Protein Crystals 

Catalase is a well described protein and is easily crystalized into high aspect 

ratio sheets which can by one or several layers in thickness making them ideal 

for electron microscopy. In particular, they have classically been used to 

characterize electron irradiation damage (187). Furthermore, catalases well 

documented crystallization and availability make it an ideal protein for studying 

the effects of electron irradiation induced damage. Because of the well 

documented behavior of resolution loss of catalase in cryo-EM (187-192), it was 

an ideal sample to try and study resolution loss in LC-TEM studies, described 

later in section 5.6.3. As such to verify our ability generate quality crystals, 

preliminary data was collected from cryo-EM damage series on 2D catalase 

crystals grown in-house. While a number of different methods of catalase 

crystallization are known, the technique described by Dorset and Parsons was 

used to crystalize bovine liver catalase purchased from Sigma Aldrich (188). 

Often, purified catalase will already be assembled into several different types of 

crystals depending on the pH of the solution, often in the shape of needles. The 

purchased stock solution was solubilized at 4oC in pH 7.4 KH2PO4/Na2HPO4 

buffer with constant gentle shaking for 12 hours. After removing insoluble 
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products by centrifugation, the solubilized protein was titrated to pH 5.3 with a 

saturated KH2PO4 solution and incubated at 4oC. After several days crystals had 

precipitated from solution and could be harvested for electron microscopy 

experiments. 

Catalase crystals grown with this technique form large 2D sheets which can be 

microns in length and width. While often seen as a single sheet, they can also 

stack forming sheets several protein layers in thickness creating 3D crystals. 

Figure 3.4 shows a high resolution electron diffraction pattern of catalase crystals 

taken with cryo-EM. The outermost reflections in this image are 2-3 Å resolution 

Figure 3.4: Electron diffraction pattern of 3D catalase crystals. Outermost reflections visible are 2-
3Å resolution. 
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diffraction spots, demonstrating our ability to obtain atomic resolution images of 

3D protein crystals. 

3.4.1 Damage of Catalase with Electron Irradiation 

Several damage experiments were performed on catalase crystals frozen in 

vitrified ice with cryo-EM, and damage data was obtained for both real space and 

diffraction images. Images were acquired by exposing the catalase crystals to an 

electron flux of 10 e-/Å2 and repeated 5 times until obvious bubble formation was 

seen, or diffraction reflections were no longer observed. Figure 3.5a shows real 

space images of catalase crystals in ice at increasing cumulative electron fluxes. 

Towards the end of the imaging series bubble formation can be seen, which is 

typical for biological samples imaged with cryo-EM as a result of the liberation 

and buildup of hydrogen gas from radiolysis (193). The power spectrums of these 

Figure 3.5: a) Bright field TEM images of catalase crystals for sequentially increasing cumulative electron 
flux. Damage in the form of bubble formation is visually apparent by 50 e-/Å2. b) Fast Fourier transforms 
corresponding to each image in (a). Reflections indicating crystallinity are lost with increasing cumulative 
electron flux. Scale bar in (a) is 100 nm. 
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images are shown in Figure 3.5b, where higher order reflections are lost as a 

function of increasing cumulative electron flux. The irradiation sensitivity and loss 

of resolution matches with what has been described in literature for damage 

thresholds of catalase crystals. These crystals were then used for LC-TEM 

experiments in an attempt to characterize how electron damage in liquids 

compares to damage in cryo-EM as discussed in chapter 5.6.3. 

3.5 Whole Cell Imaging 

While structural studies on proteins often achieve atomic level resolution and are 

extremely valuable towards understanding the structure-function relationship of a 

protein, single particle and crystallography studies lack the context of the protein 

within a whole cell context. Furthermore, ultrastructural changes that cells 

undergo as a result of environmental stimulus or genetic modification are not 

apparent when only observing a single protein. Therefore, it is important to 

characterize whole cell physiologies and morphologies in conjunction with high 

resolution studies of molecules of interest. Several techniques can be used to 

image cells at high resolutions with TEM, where the high vacuum environment of 

the instrument and the damaging properties of the electron beam must be 

considered. The intrinsic low contrast of biological material due to their weak 

interaction with the electron beam is another limitation. The most simple form of 

sample preparation is negatively staining cells with a heavy metal salt, such as 

phosphotungstic acid or uranyl acetate, and then drying on a carbon TEM grid 

(36). Another strategy is fixing cells followed by embedding them in a resin, 
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which can then be sectioned into thin slices for TEM imaging using 

ultramicrotomy (36). However, both of these conventional approaches can 

introduce artifacts in the samples, confounding image interpretation and analysis 

(194). Another method, cryogenic electron microscopy (cryo-EM), permits cells to 

be frozen in a layer of vitrified ice and kept at cryogenic temperatures preserving 

the native cellular context and composition (195-197). 

3.5.1 Negative Staining and Room Temperature Imaging 

Figure 3.6a shows an image of O. tauri which has been imaged with BF-TEM 

after negative staining. Sample preparation for this strategy is the simplest and 

fastest of all the techniques, where cells are deposited onto a glow discharged 

EM grid, negative stained for ~60s (in phosphotungstic acid in this case), and blot 

dried. When placed into the microscope, any remaining liquid or volatile organics 

evaporate into the column in the high vacuum environment of the microscope. 

Figure 3.6: a) Negative stained, room temperature BF-TEM image of O. tauri. b) Cryogenic BF-TEM 
image of O. tauri illustrating increased detail compared to the negative stain, room temperature image in 
(a). All scale bars are 1 µm. 
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Only the “mold” remaining from the stain is imaged, where most of the biological 

material sublimates into the column or is destroyed by the electron beam. As a 

result, much of the structure of the cell is lost as membrane integrity and the 

structure of many proteins are dependent on hydration. Additionally, the metal 

stain cannot fully penetrate the crevices of all biomaterial, limiting the resolution 

of the technique. Negative staining gives strong contrast which is advantageous 

for imaging biological samples, although the remaining organic material is often 

still highly beam sensitive. As a result, damage of the remaining cellular structure 

is commonly observed which further degrades image resolution and drives the 

sample further from its normal physiological state. Comparatively, Figure 3.6b 

shows an image of O. tauri taken with cryo-EM imaging, showing a considerable 

increase in structural detail and cell integrity. While negative stained dry state 

TEM of whole cells does not allow for high resolution detail to be obtained, its 

quick sample preparation makes it well suited for sample screening as a 

precursor to performing more intensive cryo-EM studies. 

3.5.2 Cryogenic Electron Microscopy 

In order to counter the dehydration and sublimation of biological material of the 

cell when exposed to the high vacuum of the TEM, the sample can be frozen in a 

layer of vitreous ice and maintained at cryogenic temperatures. This not only 

helps maintain the structural integrity and hydration of the cell but also can slow 

the propagation of damage by constraining damage products from radiolysis 

within the frozen matrix (198). As seen by the comparison of dry state to cryo-EM 
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images of the same cell in Figure 3.6, cryogenic preservation allows for 

substantially more subcellular detail. Figure 3.7 shows other cryo-EM images for 

whole cells which have been imaged with BF-TEM. Figure 3.7a is an image of 

the marine cyanobacteria Prochlorococcus marinus, the organism from which the 

CcmK protein in section 3.3.1 was taken from. Although this sample did not have 

the carboxysomes that are typical in many cyanobacteria (199), the multiple 

membranes of the organism is clearly visible in the images obtained. These 

multiple membranes are a unique feature to cyanobacteria which use them to 

increase surface area for the membrane bound light harvesting phycobilisomes 

to maximize photosynthetic activity. 

Figure 3.7b is an image of the microalgae Ostreococcus tauri, similar to the 

image shown in 3.6b. While one of the largest cells imaged in Figure 7, it is one 

of the smallest known eukaryotes with distinct membrane bound organelles. The 

ultrastructure (200) and morphological changes of O. tauri are of interest as it is 

known to produce lipid bodies of triacylglycerols during growth in nitrogen limited 
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media (201, 202). The triacylglycerols that are synthesized and stored in these 

lipid bodies originate from the diacylglycerol acyltransferase described in section 

3.2.1, where whole cell cryo-EM imaging and tomography was planned to 

provide ultrastructural context in coordination with atomic level information 

determined from the purified protein. While the generation of lipid bodies could 

Figure 3.7: a) Phase contrast cryo-EM image of P. marinus. b) Phase contrast cryo-EM image of O. tauri. 
c) Phase contrast cryo-EM image of C. metallidurans. d) Phase contrast cryo-EM image of C. 
metallidurans taken with a phase plate and collected with a direct electron detector demonstrating 
improved contrast and signal to noise with these instruments when compared to (c). Scale bars are 500 nm, 
1 µm, 500 nm, and 500 nm respectively. 
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be easily stimulated by limiting the growth media of nitrogen, whole cell imaging 

of O. tauri proved difficult, as cells imaged in cryo-EM were commonly ruptured 

after freezing. While other experiments freezing O. tauri in bulk solutions for 

imaging with x-ray tomography and FIB-SEM imaging, the process of blot drying 

samples to achieve thin ice layers for cryo-TEM imaging seems to result in the 

enough surface tension on the cells to rupture them.  

Figure 3.7c shows a cryo-EM image of the soil bacterium Cupriavidus 

metallidurans that is known for its high heavy metal resistance imparted by a 

number of genes which code for the RND class proteins for sensing and pumping 

several types of heavy metal ions (203-205). It is also known for its remarkable 

ability to biomineralize zero valence gold nanoparticles from aqueous 

environmental gold (206-208). While the exact mechanism is not clear, it 

demonstrates remarkable metabolic pathways with unique redox and oxidation 

capabilities. Understanding these pathways is of interest towards custom 

engineering of organisms with unique metabolic properties for biofuel production. 

Figure 3.7c is shown in contrast to Figure 3.7d, which is also an image of C. 

metallidurans but taken with state of the art detectors and contrast amplifying 

instrumentation. The image in Figure 3.7c is acquired on an image corrected 300 

kV TEM with a 2k x 2k CCD at an electron flux of 10 e-/Å2. In comparison, Figure 

3.7d is an image of the same organism but acquired on a 300 kV TEM with a 

phase plate, energy filter, and direct electron detector at an electron flux of 1 e-
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/Å2. The increase in contrast is noticeable, demonstrating the importance of 

instrumentation for acquiring ideal images. 

3.5.3 Cryogenic Electron Tomography 

In addition to generating 2D projection images, cryo-EM imaging on whole cell 

structures can be taken at multiple tilt angles on the same sample to obtain 

tomograms. The resulting tilt series can be reconstructed to form a 3-dimensional 

model of the sample imaged. Figure 3.8a-c shows the extreme tilts and no tilt 

image of a tilt series of O. tauri, where the images shown are the -66o tilt (a), the 

0o (b), and the +66o tilt (c) with images acquired every 3 degrees in between 

those points. The images obtained can then be finely aligned and back weighted 

projection is used to generate a z-stack of the resulting tomogram. Figure 3.8d 

shows the center slice of a z-stack from the tilt series shown in Figure 8a-c. The 

features visible in the tomogram can be outlined at every z position to create a 3-

dimensional model of the cell. Figure 3.8f shows the resulting model, where 

individual organelles have been modeled. Of note, only a central section of the 

cell has been modeled, where the top and the bottom of the cell is missing. This 

is the result of the so called “missing wedge” that occurs in tomography due to 

the missing tilt angles at very high tilts which cannot be imaged due to the 

increasing thickness of the sample. As stated previously, extensive tomography 

of O. tauri was limited by the ability to capture images of cells which were not 

destroyed during the freezing process, and future work is focused on reducing 
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the lysing of cells so that tomograms may be acquired of cells during different 

nutrient growth conditions to observe the formation and evolution of lipid bodies. 

The methodology outlined in this chapter presents the groundwork towards 

characterizing individual molecules at atomic resolutions and within an “in-situ” 

context within a whole cell. By determining high resolutions of protein structures 

through cell free expression of proteins for single particle analysis and 2D 

electron crystallography, followed by whole cell imaging and tomography, the 

context of these biomolecules can be visualized within their native state and 

organization within the cell. Future work is focused towards labeling biomolecules 

and proteins of interest for targeting with subtomogram averaging which will give 

improved context of cellular organization and structure. 

Figure 3.8: a) O. tauri at minus 66-degree tilt. b) O. tauri at zero-degree tilt. c) O. tauri at plus 66-degree 
tilt. d) Central slice from the resulting tomogram. e) Segmentation of subcellular structures in one slice of 
the tomogram. f) Resulting three-dimensional model of O. tauri. 
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4 Chapter 4: Fabrication of Free-Standing Silicon 
Nitride Membranes for Liquid Cell Transmission 
Electron Microscopy 

4.1 Introduction 

The reliable fabrication of thin, free standing membranes has been an important 

capability in the MEMs field for applications ranging from pressure sensors (152) 

to optical filters (153). Silicon nitride (SiN) is commonly used as a membrane 

material due to advantageous physical properties including corrosion resistance, 

thermal and mechanical stability, and optical absorption qualities. Thin films of 

SiN are most commonly formed using chemical vapor deposition techniques, 

where Si-N stoichiometry and film stress can be tuned based on application. The 

formation of free standing membranes can be achieved by etching through a 

silicon substrate using concentrated potassium hydroxide (KOH), where the 

silicon nitride acts as both the etch stop and etch mask for the KOH. Details for 

producing silicon devices with these free standing membranes which fit 

commercially available LC-TEM holders is described below, along with a 

demonstration of their scientific utility to understand electron-water interactions. 

4.2 Design of Nanofluidic Holders and Devices 

Replication of commercially available devices for use with commercial LC-TEM 

holders is constrained primarily by the geometry of the holder, including critically 

the dimensions of the o-rings used to hermetically seal the liquid sample, the 

aperture size for beam transmission, and the dimensions of the well which the 
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devices sit in. There are currently three commercially available holders which 

utilize free standing silicon nitride membranes supported by a silicon substrate to 

create a hermetically sealed chamber for imaging of liquid samples. While all 

three differ slightly in exact dimensions and design, each uses a series of o-rings 

to seal the liquid sample between two nanofluidic devices. A generic three o-ring 

design is depicted in Figure 4.1, where 4.1a depicts an exploded view of the 

nanofluidic devices and o-rings used for sealing. Of note, a lid is also used to 

compress the o-rings and devices together to achieve sealing and is not shown 

in Figure 4.1. A cross section of a fully assembled and sealed liquid cell is 

depicted in Figure 4.1b, showing the liquid sample sandwiched between the two 

nanofluidic devices. The critical dimension for nanofluidic device design is limited 

by the small o-rings, where the etched region forming the free-standing silicon 

nitride membrane must be within the inner diameter of the small o-ring for proper 

sealing. While the inner diameter of the smallest o-ring constrains the design for 

sealing, the imaging region is further constrained by the size of the aperture in 

Figure 4.1: a) Illustration of an exploded view of the typical 3 o-ring sealing strategy for LC-TEM holders. 
b) Cross sectional illustration of the same holder from (a) demonstrating the sealing strategy. The liquid 
thickness between the nanofluidic devices is not to scale. 
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the tip and lid which allows for transmittance of the electron beam through the 

sample. Imaging regions of the nanofluidic devices must fit within the constraints 

of this aperture to avoid the beam being blocked by the lid or tip itself. 

4.2.1 Devices for the Hummingbird LC-TEM Holder 

The dimensions for the upper and lower devices for the Hummingbird LC-TEM 

holders are identical as shown in Figure 4.2b. The length and width dimensions 

of the fabricated devices are approximately 2.6 mm x 2.6 mm, resulting in flexible 

orientation of the devices relative to one another during assembly. The depth of 

the holder well is 400 µm, so that each individual device has a thickness of 200 

µm. To achieve hermetic sealing of the liquid sample the Hummingbird holder 

uses three o-rings, a large outer o-ring with an inner diameter of 3.91 mm and a 

cross section of 0.32 mm with two smaller identically sized inner o-rings with an 

inner diameter of 1.24 mm and a cross section of 0.34 mm. The outer o-ring does 

not have a constraint on the design of the devices as it is responsible for creating 

a seal between the holder lid and tip depicted in Figure 4.1b. The inner o-rings 

seal directly onto the upper and lower device and constrain the location, shape, 

and size of the free-standing membrane region which can be formed while still 

maintaining ability for proper sealing. The limiting dimensions for the free-

standing membranes then is the inner diameter of these o-rings and is depicted 

by the green circle in Figure 4.2a. While sealing is constrained by the inner o-ring 

dimensions the practical viewing area is limited by the smallest aperture in the 
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holder through which the electron beam passes. The smallest of these apertures 

on the Hummingbird holder is 0.79 mm in diameter, shown as a red circle in 

Figure 4.2a. Figure 4.2a additionally annotates the dimensions of the photomask 

features used to create the pattern for the devices during fabrication. Figure 4.2b 

then shows the corresponding device that is formed using the mask dimensions 

from Figure 4.2a using a conventional fabrication protocol and results in a single 

free-standing membrane approximately 300 µm in length and 50 µm in width. 

4.2.2 Devices for the Protochips LC-TEM Holder 

The Protochips Liquid Stage holder uses a different sealing strategy from the 

Hummingbird and DENS Solutions holders utilizing two o-rings instead of three. 

Sealing is achieved by increasing the size of the upper device such that a larger 

o-ring seals against the underside of the upper device. The bottom device then 

seals against the holder against a small o-ring on the back side of the bottom 

Figure 4.2: a) Mask design for devices which fit the Hummingbird Liquid Stage holder. b) Illustration of 
devices produced using the mask depicted in (a). 
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device, creating the hermetically sealed chamber between these two o-rings. As 

a result, the Protochips Liquid Stage holder requires two different sized devices 

shown in Figure 4.3, and while the sealing strategy is slightly different the size of 

imaging area is similarly constrained by the size of the smallest o-ring, which has 

dimensions similar to the Hummingbird and DENS Solutions holders with an 

inner diameter of 1.2 mm depicted by the green circle in Figure 4.3a. The 

aperture for transmission is 1 mm, which constrains imaging area and is depicted 

by the red circle in Figure 4.3a. Each device is 300 µm in thickness for a total 

thickness of 600 µm, where this increase in thickness over the Hummingbird 

devices requires a slightly larger etching area for window formation at 0.6 mm x 

0.35 mm for formation of a 300 µm x 50 µm free standing membrane. The mask 

design for etching both upper and lower devices is shown in Figure 4.3a, to 

Figure 4.3: Figure 4.3: a) Mask design for large upper devices which fit the Protochips Liquid Stage holder. 
b) Mask design for the smaller lower devices which fit the Protochips Liquid Stage Holder. 
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produce devices with dimensions detailed in Figure 4.3b, the upper device 

having dimensions of 5.95 mm x 4.45 mm and the lower device having 

dimensions of 2 mm x 2 mm. 

4.2.3 Devices for the Dens Solutions LC-TEM Holder 

The DENS Solutions holder uses the same three o-ring sealing strategy as the 

Hummingbird holder, depicted in Figure 4.1, but constrained similarly by the o-

ring sealing constraints and size of the holder aperture. The top and bottom 

devices are equal in size and are 2.0 mm x 2.6mm, with a thickness of 400 µm 

for each device for a total thickness of 800 µm. The small sealing o-ring has an 

inner diameter of 1.19 mm in diameter, depicted by the green circle in Figure 

4.4a and is similar in size to the o-rings used by the Hummingbird and Protochips 

holders. The holder aperture however is considerably smaller when compared 

with the dimensions of the other holders at 0.65 mm diameter depicted by the red 

Figure 4.4: a) Mask design for large upper devices which fit the DENS Solutions Liquid Stage holder. b) 
Illustration of devices produced using the mask depicted in (a). 
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circle in Figure 4.4a, although this is enough area to fit a single window 300 µm 

in length and 50 µm in width. The increased thickness of the DENS Solutions 

devices necessitates the largest starting etch area of the three different devices 

at 0.45 mm x 0.7 mm. Figure 4.4a shows the relevant mask dimensions for 

creating devices with a conventional fabrication protocol and Figure 4.4b depicts 

the dimensions of the final devices. 

4.3 Fabrication of Single Window Devices 

The fabrication process for generation of a single window device for the above 

devices differs only in the design of the photomask for patterning and the 

duration of the KOH etch. Masks are created by copying the designs depicted in 

Figures 4.2a, 4.3a, and 4.4a in a grid design to fill a four-inch (100 mm) diameter 

silicon wafer. An example of a completed mask to pattern for Hummingbird 

compatible devices is shown in Figure 4.5, where the spacing between each 

device allows for segmentation of the devices during etching of the window. A 

small amount of material is left near each corner to prevent the devices from 

falling apart during the etch process.  

Four-inch wafers are purchased commercially double side polished and double 

side coated with low stress LPCVD silicon nitride. Silicon nitride film thickness 

can be 10-50 nm depending on the user needs for the devices, and low stress 

films are necessary to prevent wrinkling of the membranes after etching. Wafers 

are cleaned and dried under nitrogen, followed by spin coating 
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hexamethyldisilane (HDMS) at 3000 rpm for 30s to serve as an adhesion layer 

for the photoresist. The photoresist AZP 4620 is spin coated at 3000 rpm for 60s 

followed by soft baking the resist for two minutes at 70C and 3 minutes at 110C. 

The wafer is then loaded into a mask aligner and aligned to the photomask 

containing the window and device border features illustrated in Figure 4.5. The 

wafer is then illuminated for 20s followed by a rehydration incubation at room 

temperature for 30 minutes. Exposed photoresist is developed in AZ 400K 

developer in water at a 1:3 ratio for about 5 minutes or until features are 

completely developed. After development the wafer is hard baked at 180C for 30 

minutes, where the wafer is not placed on a hotplate above 60C before ramping 

up to 180C and is not taken off until the hotplate has cooled to below 60C after 

baking to prevent cracking of the photoresist. The resist now covers all areas of 

the wafer which are not etched, the exposed silicon nitride is removed with an 

Figure 4.5: a) Illustration of a mask for replicating devices for the Hummingbird Liquid Stage holder 
(individual designs from Figure 4.2) across a 4-inch wafer. b) Subset of  region from (a) showing the 
overlapping style of the borders of each device allowing for segmentation during etching. 
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RIE etch and the remaining resist is stripped in 2xNanostrip at 110C for about 30 

minutes or until all photoresist is removed from the wafer.  

The wafer is then placed in a plastic holder and into a 40% KOH bath at 80C. 

Etching of the silicon is apparent from hydrogen bubble formation and windows 

are visible once etched by shining a light through the back of the etching wafer. 

Fully etched windows will allow for the transmittance of light when completed. 

The etch rate of silicon by 40% KOH at 80C is about 1 µm /min (149) where the 

durations of etching for membrane formation for 200 µm, 300 µm, and 400 µm 

wafers will be approximately 200 min, 300 min, and 400 min respectively. 

Simultaneously during window formation the borders of each device will be 

etched in order to separate the devices into their appropriate sizes. As such, care 

must be used when removing the wafer from the KOH bath in order to prevent 

the wafer from breaking apart due to excessive jostling of the wafer.  

After removal, the etched wafer should be rinsed in water to remove excess KOH 

and then dried. If necessary, a 10 minute etch in 5M HCl may be performed prior 

to rinsing with water to remove any metal contaminants picked up during the 

fabrication process, ensuring clean membranes for electron microscopy. 

4.4 Using Single Window Devices to Characterize Radiation 
Induced Chemistry Changes in Liquids 

Devices fabricated with the processing described in section 4.3 were tested for 

use in a Hummingbird Liquid Stage holder to determine the effectiveness and 
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utility of the devices. Testing of devices entailed loading two devices within the tip 

of the holder with a small volume of liquid trapped between the devices, where 

imaging of the liquid was performed through the overlapping free standing silicon 

nitride membranes. While not shown, initial LC-TEM experiments identified 

membrane wrinkling and nitride surface contamination resulting from the 

fabrication process which were corrected through changes in the fabrication 

protocol. To demonstrate the science utility of the devices, experiments were 

devised to characterize the effect of the electron beam on liquid samples. As 

electrons are an ionizing radiation source and electron damage is known for 

materials and cryogenic samples, understanding how electrons interact with the 

liquid sample is key towards the ultimate project goal of imaging biological 

samples.  

Initial experiments in the field have demonstrated the precipitation of 

nanoparticles from solution under electron beam irradiation (97). As existing 

projects within the group were interested in understanding the formation of 

nanoparticles for medical and energy applications, LC-TEM experiments on 

these samples were a convenient test case for characterizing electron-liquid 

interactions with the newly fabricated devices. The system of interest was the 

production of small nanoparticles of cerium oxide which have a number of 

applications including therapeutic properties due to their antioxidant 

characteristics in biological systems (209-213). Particles of less than 5 nm 

diameter appear to be preferably morphologies, and as such there is a need for a 
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synthesis pathway to create a homogenous population. Electron irradiation of 

aqueous metal salt solutions has been demonstrated to reliably precipitate 

nanoparticles from solution that have a high degree of size uniformity. Precise 

control of the electron flux in combination with defined precursor chemistry can 

allow for some level of control over the size and morphology of the particles that 

are ultimately grown (126, 214).   

The first step for a radiolysis driven growth experiment is to characterize electron 

beam conditions that can cause the reduction of the precursor solution to 

precipitate nanoparticles. The redox potential of the solution is dependent on the 

electron flux, where the illumination area is directly related to the corresponding 

electron flux. For STEM imaging, this also corresponds to the magnification and 

imaging field of view. Thus, the beam current must be appropriate at the optimum 

magnification that allows for visualization of the nanoparticles. Figure 4.6 shows 

an early experiment for finding conditions for imaging nanoparticles of ceria. 

Frames are taken during different time points during irradiation of a CeNO3 

precursor solution at a 0.1 mM concentration and an initial pH of 5.2. While some 

material can be seen to precipitate over the course of the experiment, discreet 

particles are not apparent at the magnifications used. Through further 

experiments, it was found that the precipitated nanoparticles only reached a 

maximum size of ~2 nm diameter before aggregating and forming a thin film on 

the surface of the membrane (101). Intriguingly, these particles were found to be 

a phase of cerium oxide that normally only forms under basic pH conditions 
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(101). Because previous work has suggested that for pure water the pH is always 

driven acidic regardless of the electron flux (215), we needed to further 

understand the chemistry of the system that would result in a phase that would 

not have been expected thermodynamically. 

4.4.1 Simulation of Radiolysis Driven Chemistry Changes 

The particle nucleation experiments above demonstrated an unexpected 

chemistry state of the system based on typical assumptions about electron beam 

driven solution changes. To understand these results, numerical simulation of 

radiolysis products can be used to explain how the solution chemistry resulted in 

a state that supported the formation of the observed cerium phase. Established 

Figure 4.6: a) HAADF STEM image series of cerium nanoparticles precipitated under electron irradiation. 
b) BF STEM image series acquired simultaneously to the images in (a). 
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simulation code was adapted to consider the cerium nitrate species of the 

precursor solution to simulate the effect of radiolysis on solution pH (215). 

The nucleation and growth of metal nanoparticles from an aqueous metal salt 

precursor solution using LC-TEM has been well documented (97, 105, 151), 

where the chemistry driving these redox reactions is predicted to be driven by 

electron beam radiolysis of the solvent water (215). The primary radiolysis 

products of pure water created upon irradiation by the electron beam are 

hydrated electrons (eaq-), H•, OH•, HO2•, H2, H2O2, and H3O+ (215). These species 

react with each other and the surrounding water to form the steady state 

products shown in Chapter 2. The rate of production of these species under the 

electron beam has been determined known as the g-value, defined as the 

number of species formed per 100eV of energy absorbed (216), and are 

assumed to be homogenously distributed after 1 µs of irradiation (217). Along 

with the empirically determined g-values, known reaction constants for reactions 

between the radical species can be used in numerical simulations to determine 

the steady state products of radiolysis for a given incident dose (215). For pure 

water and doses commonly encountered for LC-TEM experiments it has been 

demonstrated that pH decreases with electron irradiation where the magnitude of 

change is dictated by the incident electron dose (215). By combining the known 

generation rate of radicals with the reaction constants from the relevant half 

reactions the steady state equilibria of radicals can be estimated through 

numerical simulation (215). For systems and precursors which have added metal 
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salts, the additional half reactions can be added to the simulation to predict 

solution chemistry in more complex systems (126). This has been demonstrated 

for the precipitation of Au nanoparticles from a gold chloride precursor (126), 

suggesting it was possible to use the same system to describe the 

thermodynamics such that the phase of ceria observed could be formed.  

Figure 4.7 shows simulations of the pH (concentration of H+ ions) during electron 

irradiation. Figure 4.7a shows the pH change with different electron doses. 

Importantly, the dose for these calculations is expressed in Grays which is a 

measure of the absorbed dose. Only the inelastically scattered electrons 

contribute to radiolysis formation, the proportion of which compared to elastically 

scattered electrons is dependent on the thickness and atomic number of the 

sample. As such, the dose expressed in Grays is only linked to the electron flux 

through the average cross section of the sample. For all the relevant dose values 

for transmission electron microscopy the pH was calculated, and each reaches 

an equilibrium state by approximately 1 µs of irradiation time. Because the solute 

(in this case water) can be considered effectively infinite the conditions reached 

during electron irradiation revert back to the initial properties of the solution after 

the beam is turned off. Figure 4.7b illustrates this behavior where the first 3 µs 

shows the pH of the solution during electron irradiation. The beam is turned off 

(in simulation the generation of additional radical species of water is no longer 

considered) after 3 µs (indicated by the dashed red line) where the pH then rises 

back to its initial state over the course of several µs. For both these cases of pure 
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DI water, the pH decreases for all conditions. As mentioned before, the phase of 

cerium hydroxide that is reached is only thermodynamically stable at basic pH’s, 

indicating that the additional CeNO3 in the precursor solution much change the 

chemistry enough to result in a basic pH during electron irradiation. 

Table 1 shows the reactions and corresponding rate constants for atomic cerium 

with radicals that are produced through radiolysis. These rate constants were  

Figure 4.7: a) Simulation of the evolution of solution pH under different incident dose 
conditions. b) Simulation of pH under electron irradiation and then the relaxation period 
where the pH equilibrates after the beam is turned off. The dotted red line illustrates 
when the beam is turned off. 
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incorporated into the numerical simulation code, and simulations were run to 

check the evolution of pH with the included Ce reactions. Figure 4.8a shows the 

pH evolution of DI H2O while Figure 4.8b shows the pH evolution for an identical 

electron dose but including the Ce reactions in table 1. When the Ce products 

are included, the pH rises for the given dose, ~104 Gy/s (the dose was equivalent 

to the electron flux used for imaging experiments). Increasing the electron flux 

(and corresponding absorbed dose), results in the pH initially decreasing and still 

rising after several nano seconds.  

If the dose is high enough, the pH equilibrium is ultimately more acidic than the 

initial starting pH. This relationship is shown in Figure 4.8c. The rise in pH 

observed when incorporating the Ce reactions in table 1 is likely due to the 

excess of OH- which is produced through the cycling of Ce oxidation state which 

Table 4.1: Rate Constants of Ce Reactions with Radiolysis Products 

 

Cerium Reactions 

 

Rate Constant (25oC) (M-1.s-1) 

(3)e-aq + Ce3+ → Ce k = 1.0 x 10^9 

e-aq + Ce4+ → Ce3+ k = 6.6 x 10^10 

OH· + Ce3+ → Ce4+ + OH- k = 3.0 x 10^8 

H· + Ce4+ → H+ + Ce3+ k = 6.5 x 10^7 

O·- + Ce3+ → Ce 4+ + OH- k = 7.2 x 10^8 

HO2· + Ce3+ + H+ → H2O2 + Ce4+ k = 7.3 x 10^5 

HO2· + Ce4+ → Ce3+ + H+ + O2 k = 2.7 x 10^6 

Ce + (3)H2O → Ce3+ + (3)OH- + (3/2)H2 k = 1.0 x 10^9 
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results in a consumption of produced H+ and generates OH-. While the pH is 

seen to rise, for the starting pH of 5.2 the equilibrium pH is only around 7, still not 

high enough to thermodynamically favor the formation of the phase of cerium 

hydroxide observed in the LC-TEM experiments. It should be noted that only the 

Ce species were incorporated in the numerical simulations for calculating pH. 

NO3 was also present in the precursor solution, although the inclusion of reaction 

Figure 4.8: a) Simulation of pH for pure water under electron irradiation. b) Simulation of 
solution pH for an aqueous solution of cerium nitrate. c) Simulation of solution pH for an 
aqueous solution of cerium nitrate under varying dose conditions. 
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constants for every possible NO3 reaction would have considerably increased the 

complexity of the simulations. Furthermore, not all reaction rates are known or 

publicly available for every possible reaction, further complicating their inclusion.  

𝑁𝑁𝑂𝑂3− + 10𝐻𝐻+ + 8𝑒𝑒𝑎𝑎𝑎𝑎− → 𝑁𝑁𝐻𝐻4+ + 3𝐻𝐻2𝑂𝑂  (1) 

𝑁𝑁𝑂𝑂3− + 7𝐻𝐻2𝑂𝑂 + 8𝑒𝑒−𝑎𝑎𝑎𝑎 → 𝑁𝑁𝐻𝐻4+ + 10𝑂𝑂𝐻𝐻−  (2) 

Reaction 1 and reaction 2 are both reactions of NO3 with aqueous electrons 

would produce an excess of OH- which would drastically drive the pH basic. It 

may very well be that the inclusion of the NO3 species is enough to substantially 

increase the pH to thermodynamically favor the phase of cerium hydroxide that 

was observed. 

The use of numerical simulation to characterize the chemistry of the liquid 

sample during electron irradiation is an important step in characterizing electron 

beam-water interactions. While biological samples will ultimately be far more 

complex than the systems described here, they provide a good foundation for 

future studies trying to understand the role of the electron beam in driving 

dynamics with LC-TEM. 
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5 Chapter 5: Fabrication of Multiwindow Nanofluidic 
Devices and the Role of Electron Irradiation History in 
Interpretation of LC-TEM Results 

5.1 Introduction 

In chapter 4 we demonstrated the utility of LC-TEM for imaging the dynamics of 

nanoparticle growth at high spatial resolution in conjunction with numerical 

simulations to explain the chemistry behind the products precipitated from the 

electron beam (101). However, the replication of experiments which utilize the 

single window devices described there is difficult due to intrinsic limitations 

surrounding the design and geometry of the devices themselves (103). These 

limitations constrain the type and scope of applications which may be 

investigated with the technique and as such, overcoming them is critical to 

expanding science applications. In order to accelerate the impact of the 

technique we identified primary design areas which were the source of 

experimental bottlenecks. In this chapter I describe the design, fabrication, and 

optimization of new devices which overcome the limitations of currently available 

commercial solutions. 

5.2 Limitations of Single Window Devices 

5.2.1 Bulging of Membranes 

One of the consequences of imaging hermetic chambers in a TEM is the 

pressure differential that occurs between the high vacuum state of the instrument 

(typically near 10-6 mbar) and the significantly higher pressure of our ambient 
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environmental samples (generally 1 atm). As the described membranes used for 

imaging are quite thin relative to their width and length (generally 10s of 

nanometers in thickness and microns in area), their ability to resist the outward 

pressure of the liquid sample against the vacuum of the column is limited. In 

practice this results in significant outward bulging of the membranes, and can be 

as much as 100s of nanometers towards the center of the films (124). This 

bulging results in a gradient of thickness increase across the imaging window, 

with the maximal thickness in the center. Figure 5.1a shows a BF-TEM image of 

a typical liquid cell depicting the effect of this window bulging on image contrast, 

where the corners are the thinnest sections of the imaging area and allow for the 

highest transmittance of electrons. Towards the center of the window as 

thickness increases contrast is reduced due to increased inelastic collisions 

which scatter electrons at high angles. The magnitude of this bulging can be 

quantified using EELS, where the thickness at probe locations can be determined 

by collecting spectra and calculating the log ratio between the integrated signal of 

the zero loss peak and the plasmon. Figure 5.1b shows a plot of measured 

thicknesses using EELS across a single window inside of the microscope 

displaying characteristic bulging. 

The practical effect of this bulging induced thickness gradient is that most 

experiments are limited to the corners of the windows (218). Primarily this is to 

maximize contrast and resolution, and signal to noise, contrast, and resolution 

are all reduced with increasing thickness (219). Additionally, as discussed in 
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chapter 4, for experiments which require precise control over the chemistry of the 

solution or precursor a gradient of thicknesses could cause changes in 

concentration of beam generated radicals which can significantly impacting 

observed results. Thus, in order to ensure that the thicknesses are effectively 

equivalent for comparison of replicate experiments or observations, membrane 

bulging effectively limits observations to the corners of the windows. 

5.2.2 Limited Imaging Area 

As illustrated in chapter 4 the free-standing silicon nitride membrane formed from 

the standard fabrication protocol results in a single window which is 50 µm x 300 

µm, shown in Figure 5.2a. During assembly, the membranes between two 

devices can be aligned such that they are oriented in the same direction as 

Figure 5.1: a) Low magnification HAADF STEM image of a LC-TEM window depicting a contrast 
gradient towards the center of the window indicating increasing thickness. b) Illustration of 
membrane bulging based on EELS thickness measurements taken from a window region similar to 
the one shown in (a). 
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shown in Figure 5.2b. However, as illustrated in Figure 5.2b, where the light blue 

window is one window and the dark blue window is the other, the imprecision of 

alignment between the two windows can be as much as 10-20 µm which results 

in overlapping of the imaging area. While this orientation still results in the largest 

potential viewing area, the membrane bulging described in section 5.2.1 results 

in different effective thicknesses at each window corner. This window orientation 

then makes quantitative comparisons between successive imaging experiments 

performed in different locations complicated or impossible. Figure 5.2c shows the 

alternative assembly where one window is rotated 90o with respect to the other 

resulting in the crossed arrangement shown in Figure 5.2c. This arrangement is 

resistant to variable alignment, where the thicknesses at each corner will be 

effectively equivalent when taking into account window bulging. While this 

arrangement is optimal for quantitative comparison of experiments, the end result 

is that there is a significant reduction in available imaging area for experiments. 

Typically, with a single window device, a maximum of four experiments may be 

Figure 5.2: a) Illustration of a single rectangular window region for LC-TEM. b) Illustration of a parallel 
window alignment strategy where slight misalignment between windows results in non-equivalent 
thicknesses at each window corner. c) Illustration of perpendicular alignment strategy which creates 4 
window corners of effectively equivalent thickness. 
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performed on a single device which drastically reduces the throughput of the 

technique, and as described in the next section, results between separately 

assembled samples proves highly difficult in practice. 

5.2.3 Thickness Variation 

As a result of reduced imaging area, for replication of datasets or collection of 

multiple images of a sample for characterization several different samples must 

be loaded and assembled into a set of devices. In theory the thickness of the 

liquid layer between the two silicon nitride membranes can be dictated by the use 

of spacer material patterned on the surface of one, or both, of the devices (77). 

However, this thickness can be increased by environmental contaminants, a non-

aqueous sample sitting on top of the spacer material, or a non-aqueous sample 

may clump together forming a particle which dictates the nominal thickness of the 

assembled liquid cell. Despite careful control of loading and the quality of the 

sample highly variable thicknesses are typical for otherwise identical samples. 

Figure 5.3 illustrates this variability and the effect it has on systems studying the 

chemistry of nucleation and imaging of biological samples. Figure 5.3a shows 

frames from experiments precipitating silver nanoparticles from an aqueous 

precursor of 0.1 mM silver nitrate from three different assembled liquid cells. 

Frames are shown at three minutes into irradiation and after 10 minutes of 

irradiation. For each assembled sets of devices and experiments the spacer 

thickness was the same and the imaging conditions used, electron flux, field of 
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view, and time, were all the same. The only variable not controlled between 

these experiments was the thickness, where significant changes in nucleation 

behavior was observed for different liquid thickness conditions. Figure 5.3b 

shows the effect of thickness on variability on imaging whole cells, where an 

increase in thickness between otherwise identical samples results in a significant 

loss of signal to noise, contrast, and resolution for increasing thicknesses. 

Unfortunately, despite the importance sample thickness plays in the outcome of 

LC-TEM experiments it remains a highly variable parameter that is difficult to 

control especially for non-aqueous samples which have a tendency to clump 

together. This variability amplifies the factor of luck for obtaining multiple samples 

Figure 5.3: a) Frames from three different nanoparticle growth experiments where the precursor and 
imaging conditions were identical between each experiment and the only difference was thickness. 
Different growth kinetics are apparent between the different samples as a result of thickness changes. b) 
Bacteria imaged with LC-TEM at low and high magnifications depicting the effect of increasing thickness 
on resolution, contrast, and signal to noise ratio. Scale bar in (a) is 50 nm and in (b) is 1 and 10µm. 
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with similar liquid thicknesses, and substantially reduces the throughput of the 

technique. 

5.2.4 Bypass of Flow 

For commercially available holders which have the capability to flow fresh liquid 

to the imaging area the option of flowing a non-aqueous sample to the imaging 

area may be attractive for reducing the chances of sample clumping or non-

uniform distribution over the device surface. Furthermore, while many 

nanoparticle growth experiments are initiated using the electron beam as a 

reducing agent the ability to flow two mixing samples which result in particle 

growth (125) or environmental stimuli to a biological sample (112) is a potential 

way to visualize dynamics near initialization of the reaction. For all of these cases 

however there is no direct path of the sample to the imaging area, as depicted by 

Figure 5.4. Figure 5.4a shows a cross section of a generic LC-TEM holder using 

3 o-rings to achieve hermeticity, while Figure 5.4b shows a top down view of the 

same assembly. The flow inlet for liquid enters the hermetic chamber, where its 

outer constraints are the large, out o-ring, and inner constraints are the small 

inner o-rings surrounding the windows. As such, there is nothing forcing the liquid 

sample to flow through, rather than around, over, or below, the devices. 

Furthermore, even if sample does flow between the devices there is no incentive 

for the sample to flow over the imaging area which is small relative to the rest of 

the surface area of the device. The result of this is that there can be significant 

flow of sample around rather than through the imaging windows. Especially for 
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samples which are at or near the thickness separating the two devices, often 1 

µm or less, the path of least resistance is around the devices which have 

channels 10s to 100s of microns in dimensions. For experiments which utilize 

these flow capabilities to flow already nucleating particles (125), it is unclear how 

representative the samples which reach the imaging windows are of the bulk 

sample, or if significant “filtering” of the sample may occur due to the drastic 

difference in channel dimensions. This limits significantly the type and scope of 

experiments which may be performed with LC-TEM. 

Figure 5.4: a) Cross sectional illustration of a flow holder depicting the bypass flow 
channels where liquid can flow around the sample. b) Top down illustration of the same 
holder in (a) aiding visualization of how flow can pass around, or over, the sample. 
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5.3 Design of Multiwindow Devices 

5.3.1 Hummingbird Devices 

The mask dimensions for fabrication of five window devices compatible with the 

Hummingbird Liquid Stage is shown in Figure 5.5a. The starting etch area for the 

windows are rectangles 40 µm in width and 700 µm in length. Each window is 

spaced 110 µm edge to edge and all five windows are centered within the device. 

Channels 40 µm in width are also patterned defining the edges of the device and 

section the devices apart during window formation to form devices. Patterned 

borders result in devices which are approximately 2.52 mm on each side when 

fabricated. 100 µm segments are left out at each of the corners in order to 

“perforate” the devices so they stay together during etching. Figure 5.5b depicts 

the final devices where each is 2.52 mm x 2.52 mm and contain five windows, 

each of which is approximately 40 µm in width and 680 µm in length. The green 

and red circles in Figure 5.5a depict the size of the inner diameter of the sealing 

o-ring (1.24 mm inner diameter) and the diameter of the aperture in the holder 

(0.79 mm diameter) respectively with the holder aperture constraining the area 

through which electrons may be transmitted. The final windows formed are 

approximately 40 µm in width and 680 µm in length, which fits within the inner 

diameter of the sealing o-ring and within the aperture diameter. In theory this 

results in a 5x5 grid of available windows when assembled, although often due to 

imprecision of device alignment one or several of the windows may become 

occluded by the aperture of the holder. 



86 

5.3.2 Protochips Devices 

Figure 5.6a and 5.6b shows the mask design for fabrication of the upper and 

lower devices for use in the Protochips Liquid Stage holder. Similar to the 

Hummingbird devices the outlines of each device for the Protochips holder is a 

40 µm width channel with 100 µm length perforations at the corners. The upper 

device for the Protochips device is larger, with a final size of 4.45 mm in width 

and 5.95 mm in length shown in Figure 5.6d. The window position is offset from 

the long axis and centered in the short axis, with the center window being 2.3 

mm from the leading edge of the device as shown in Figure 5.6a. The etch area 

for each window is 40 µm in width and 700 µm in length, each separated 110 µm 

edge to edge. These fit within the small sealing o-ring (1.2 mm inner diameter) 

and within the aperture of the holder (1 mm) depicted by the green and red 

Figure 5.5: a) Mask design for multiwindow devices which fit the Hummingbird Liquid Stage holder. b) 
Illustration of devices produced using the mask depicted in (a). 
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circles respectively. The lower device for the Protochips holder is smaller, with 

final dimensions of 2.0 mm in width and 2.0 mm in height shown in Figure 5.6c. 

The dimensions for the border and window area is identical to the larger upper 

device but is centered equally from each edge of the smaller device. 

5.3.3 Dens Solutions Devices 

Figure 5.7a shows the mask design for devices used in the Dens Solutions Liquid 

Stage holder. The border of each device is formed by etching a 40 µm channel 

around the outline of the device as has been described for the other devices for 

the Hummingbird and Protochips holders. Each corner is perforated with a 100 

µm spacer to prevent the devices from falling apart during etching. The green 

and red circles in Figure 5.7a show the size of the inner diameter of the small 

sealing o-ring and the diameter of the aperture of the holder which are 1.19 mm 

Figure 5.6: a) Mask design larger upper for multiwindow devices which fit the Protochips Liquid Stage 
holder. b) Mask design for the smaller lower multiwindow devices which fit the Protochips Liquid Stage 
holder. c) Illustration of devices produced using the mask depicted in (b). d) Illustration of devices 
produced using the mask depicted in (a). 
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and 0.65 mm in diameter respectively. The aperture for the Dens Solutions 

holder is the smallest of the three commercially available holders, and it is 

difficult to fit five windows within this area as a result. Separation between 

windows is important to provide structural support of each individual window, and 

while five windows could be fit the spacing between each would be little enough 

that the silicon separating the windows could be easily damaged without 

especially careful handling of the devices, reducing their throughput. With four 

windows, 95 µm edge to edge separation of each window is possible, compared 

to the 110 µm edge to edge separation used in the Protochips and Hummingbird 

holder designs. The four windows are centered within the device borders and are 

equidistant from each edge. The etch area for each window is 500 µm in width 

Figure 5.7: a) Mask design for multiwindow devices which fit the DENS Liquid Stage holder. b) 
Illustration of devices produced using the mask depicted in (a). 
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and 40 µm in width, for final window dimensions of approximately 40 µm in width 

and 480 µm in length. The final device dimensions are 2 mm in width and 2.6 mm 

in height shown in Figure 5.7b. 

5.4 Fabrication of Multiwindow Devices 

The fabrication protocol described in Chapter 4 for fabrication of single window 

devices utilizing a KOH etch through the full thickness of the substrate results in 

anisotropic etching of the silicon along the [111] planes. For the [100] oriented Si 

wafers used for fabrication this results in inward tapered pits that are pyramidal in 

structure. To fit more windows within the same area etching must occur at a 

higher aspect ratio, where the ideal profile of the etching is vertical. Deep 

reactive ion etching (DRIE) is an etching process which uses a plasma to 

facilitate etching and is known as “dry etching” since it does not take place in a 

liquid environment as other wet etching techniques do such as KOH etching. The 

Bosch process allows for this high aspect ratio etching, where nearly vertical side 

walls can be achieved through serially alternating between deposition of a Teflon 

layer and then etching with an oxygen plasma. Figure 5.8 illustrates the 

difference in etching profile between the KOH based process described in 

Chapter 4 and the Bosch etch based process that is used to fabricate multiple 

windows described below. Figure 5.8a is a cross section of a device (not shown 

to scale) which has been fabricated with KOH illustrating the anisotropic etching 

along the [111] planes at a 54.7o angle. This limits the number of etching regions 

which can be placed within the constraints of the inner diameter of the sealing o-
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ring, also shown in the cross section. Figure 5.8b shows the cross section for a 

device utilizing a high aspect ratio anisotropic DRIE etch, detailing nearly vertical 

side walls for window formation. In this way multiple etching regions and resultant 

windows can be fit within the constraints of the sealing o-ring. Some optimization 

however is required in order to perform this etching through the full thickness of 

the silicon wafer in order to prevent excessive damage to the wafer or the 

instrument. 

Figure 5.8: a) Cross sectional illustration of a nanofluidic device fabricated with a conventional KOH etch 
depicting the inward tapering pits. The sealing o-rings dictate a single window for these devices. b) Cross 
sectional illustration of a multiwindow nanofluidic device fabricated with a DRIE and KOH etch to achieve 
nearly vertical side walls. Up to five windows can be fit within the sealing o-ring with this strategy. 
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5.4.1 DRIE Optimization 

A limitation of using DRIE for etching the Si substrate to form free standing 

silicon nitride membranes is that the plasma does not have etch selectivity for the 

silicon nitride. As a result, both the top surface must be masked, to limit etching 

to only the window regions, and the etch must be stopped 10-20 µm from the 

silicon nitride on the opposite surface and the windows finished with a short KOH 

etch in order to prevent over etching of the silicon nitride.  The etching variability 

is a concern, as the amount of silicon milled with a single Bosch cycle can be 

variable to microns. Furthermore, the    depth achieved from a single cycle can 

change across the lateral surface of a standard 4-inch wafer due to non-

uniformities in the plasma density generated by the instrument. 

5.4.1.1 Lateral Etch Variation 

In order to characterize the difference in etch depth as a function of wafer 

position a bare silicon wafer was patterned with the design for the Hummingbird 

five window devices using a DRIE specific photoresist (AZ P4620). 200 Bosch 

cycles were performed and the depth was measured at various positions across 

the wafer shown in Figure 5.9a using optical profilometry. Figure 5.9b shows a 

box and whiskers plot for the average etch depth depending on the radial 

distance from the center of the wafer. As shown in Figure 5.9b, the deepest 

etching occurs at the center of the wafer, indicating that measurements taken to 

estimating the etch depth of the window regions should be taken in the center of 

the wafer in order to prevent over etching of the wafer.  
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5.4.1.2 Resist Thickness Optimization 

Masking for DRIE etching is accomplished using the photoresist AZ P4620 

designed specifically for dry etching. While it has good etch selectivity, it is still 

slowly etched by the plasma during the etch process. To etch through the full 

thickness of the silicon  

Table 5.1: Photoresist conditions for different thickness substrates 

Device 
Spin Speed 

(rpm) Spin # 
Soft Bake 1 

(min) 
Soft Bake 2 

(min) 
Rehydration 
Time (min) 

Exposure 
Time (s) 

Depth 
(µm) 

Hummingbird 1500 1 70oC: 2 
110oC: 3 x 30 30 260 

Protochips 3000 2 70oC: 1 
110oC: 1 

70oC: 2 
110oC: 3 30 30 324 

Dens 
Solutions 2000 2 70oC: 1 

110oC: 1 
70oC: 2 
110oC:3 60 30 428 

Figure 5.9: a) Depiction of depth measurements taking with optical profilometry across a four-inch wafer. 
b) DRIE etch depth as a function of position as measured by optical profilometry. 
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wafer the resist layer must be thick enough to not etch through during the etch 

process. The thickness of the wafers for Hummingbird, Protochips, and Dens 

Solutions devices are 200 µm, 300 µm, and 400 µm respectively. The thickness 

of the resist then can be optimized such that it survives the etch process for the 

duration necessary. By optimizing the spin coating speed and number of 

photoresist layers spun onto the wafer photoresist conditions for each device 

were determined. Table 5.1 shows the spin conditions, soft bake, exposure, and 

subsequent maximum etch depth in order to produce devices of the correct 

thickness for the corresponding holders. For a starting etch region 40 µm in width 

as described in sections 5.3, the etch depth should be taken to within 10-20 µm 

of the full thickness of the wafer. Therefore, the 200 µm Hummingbird devices 

should be etched to ~190 µm, the 300 µm Protochips devices should be etched 

to ~290 µm, and the Dens Solutions devices should be etched to ~390 µm prior 

to the final KOH step. 

5.4.2 Fabrication Protocol 

For any of the commercial LC-TEM holders being used the corresponding mask 

design from 5.3 is copied across a region to cover a standard 4-inch silicon 

wafer, in the same way that was described in Chapter 4.3 with the single window 

devices. Masks are designed as positive masks for use in patterning the etching 

mask. Wafers are purchased double side pre-coated with LPCVD low stress 

silicon nitride films 10-50 nm in thickness. Low stress nitride is critical as 

standard silicon nitride films have residual stress that will cause wrinkling of the 
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membranes after etching is completed. Wafers are first coated with HDMS, used 

as an adhesion layer for the masking photoresist, at 3000 rpm for 30 s. AZ 

P4620 is then spun on the same side of the wafer as described in section 5.4.1 

depending on the thickness of the wafer. In the case of wafers 300 µm in 

thickness for use with Protochips holders, the initial layer of AZ P4620 is spun at 

2000 rpm, followed by a soft bake for 1 min at 70oC and 1 min at 110 oC. A 

second layer is then spun at 2000 rpm followed by a second soft bake for 2 min 

at 70 oC and 3 min at 110 oC. The wafer is rested at room temperature for 30 

minutes to allow for rehydration of the photoresist prior to developing. The mask 

for the corresponding design is used in conjunction with a mask aligner and the 

wafer is exposed for 30 s, followed by developing in AZ 400K in water at a ratio 

of 1:3. After examining the resist to ensure complete development the wafer is 

hard baked at 180oC for 30 min. During the hard bake, the wafer is not put on the 

hot plate until it is below 60oC and it is not removed from the hot plate after the 

heat is turned off until it is below 60oC. This helps prevent cracking of the resist 

which can occur if the photoresist cools or heats too quickly.  

After the hard bake the wafer is ready for DRIE etching. The DRIE Bosh 

deposition step uses an RF forward power of 10 W, an ICP forward power of 

2200 W, SF6 at 1 sccm, C4F8 at 80 sccm, and lasts 5 s. A helium backing of 5 

sccm is used for wafers 200-300 µm in thickness, while a flow rate of 10 sccm is 

used for wafers 400 µm or thicker. The DRIE Bosh etch step uses an RF forward 

power of 40 W, an ICP forward power of 2200 W, SF6 at 160 sccm, C4F8 at 1 
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sccm, and lasts 7 s. Bosh deposition and etch steps are alternated where one 

Bosch cycle contains one deposition step followed by one etch step.  In order to 

prevent over etching of the target thickness, specified at the end of section 5.4.1, 

the wafer is etched incrementally and measured using optical profilometry after 

every round of etching to check the depth of the wafer. For a 300 µm thickness 

wafer for making devices for the Protochips holder the target depth is ~290 µm. 

Typically, the first 250 cycles reach 132 µm depth, the second 250 cycles reach 

237 µm depth, the next 75 cycles reach 272 µm depth, and a final 35 cycles 

reaches 289 µm depth. Each time the etching is performed the cycles are run in 

this stepwise fashion ensuring that the final depth is near the appropriate value 

for the thickness wafer being used. 

 After DRIE etching the remaining 10-20 µm of silicon must be removed to form 

the free standing membranes using KOH etching. The remaining AZ P4620 on 

the wafer is stripped by soaking the wafer in nanostrip 2x at 110oC until the resist 

has been totally removed. KOH is heated slowly with stirring to 80oC, and the 

wafer is placed in the KOH bath at temperature, etching of the silicon is visible by 

bubble formation caused by the evolution of hydrogen gas as a byproduct of the 

etching. At around 20 minutes in the KOH bath the windows may begin to 

become transparent, shining a light through the backside of the wafer while in the 

KOH bath can help determine that the etching is complete. Typically, windows 

will be fully formed after 30 minutes of etching, and care should be taken to not 

over etch as the [111] Si planes still etch but at a reduced rate. Over etching of 
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the wafer can cause it to fall apart inside of the KOH bath and substantially 

reduces throughput of the process. After the wafer is carefully removed from the 

bath it should be rinsed in distilled deionized water several times and can 

optionally be treated with a concentrated HCl (5M) soak for 5-10 minutes to 

remove any metal nanoparticle contaminants. Figure 5.10 shows completed 

multi-window devices for use with the Protochips and Hummingbird holders 

fabricated using the above described protocol. 

5.4.3 Spacers and Focus Bars 

Patterning of metal thin films on the surface of the devices prior to window 

formation is also possible using lift off deposition techniques. Material to act as 

Figure 5.10: a) Large upper device for use in a Protochips Liquid Stage holder. b) Small, lower device for 
use in a Protochips Liquid Stage holder patterned with spacers. c) Same as (b) but with no spacers. d) 
Devices for use in a Hummingbird Liquid Stage holder with patterned spacers. e) Same as (d) but with no 
spacers. Scale bar is 3mm. 
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spacers to dictate the minimum thickness of the liquid layer may be patterned on 

the wafer surface outside the window area, in addition to structures patterned 

directly on the windows to serve as focusing aids. Electrodes and cell traps are 

other features which may be useful to pattern on the surface of the windows 

depending on the application of the devices. Masks for these features are 

generally negative masks in order to accomplish a negative resist profile, which 

is advantageous for liftoff deposition techniques. Prior to etching, the desired 

wafer is coated with AZ 5214E at 3000 rpm for 60s. Converse to the protocol 

described in 5.4.2, HDMS is not used as an adhesion layer for liftoff deposition in 

order to enhance liftoff of the patterned features. The coated AZ 5214E is soft 

baked at 90oC for 2 minutes, followed by exposing the desired mask in a mask 

aligner for 2 s. At this point, the photoresist is a positive profile and if developed 

would turn out as such. The wafer is then baked again at 120oC in order to 

reverse the photoresist to a negative profile. The wafer is left to rest at room 

temperature for 10 minutes for rehydration followed by a 30 s flood exposure in 

the mask aligner with no mask present. The wafer is then developed in AZ 340 in 

water at a 1:5 ratio for 30-45 s. The resist can be easily overdeveloped for fine 

features and care should be made to optimize the development time based on 

the features being patterned.  

After photoresist patterning the wafer is loaded into a magnetron deposition unit. 

For patterning gold thin films the chamber is pumped to a backing pressure of 10-

7 mtorr, followed by an initial deposition of 10nm of chromium as an adhesion 
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layer. Chromium is deposited at 2 mtorr and 50 W DC following a RF cleaning 

step to remove any oxide layer formed on the surface of the target. Deposition 

time will depend on the tooling factor of the instrument, and for the devices 

described here was 50s to achieve films 10nm in thickness. Immediately after 

gold was deposited at 5 mtorr chamber pressure, 50 W DC, following an RF 

cleaning step. The deposition rate was 0.5 nm/s, and films ranging from 50-

500nm were deposited depending on application. Immediately after deposition 

the wafers are removed from the deposition unit and placed into an acetone bath 

with sonication to begin the liftoff of the photoresist. After 10-15 minutes of 

sonication the photoresist should be removed leaving behind the thin film 

deposited on regions not covered by the photoresist. Care should be taken at this 

point to prevent redeposition of the lifted off thin film back onto the wafer. When 

removed from the acetone bath the wafer should be immediately rinsed with 

acetone, followed by distilled water, and then into a nanostrip 2x bath before the 

wafer can dry. After 10-20 min of soaking in the nanostrip bath at 110oC the 

wafer can be removed and dried.  Examples of patterned thin films are shown in 

Figure 5.10b, 5.10d, and 5.10e depicting spacers and focus grid bars patterned 

using the protocol described above. Window patterning, etching, and formation 

can now be carried out as described in section 5.4.2. 

5.5 Low Dose Imaging Regime for LC-TEM 

The patterned focus bars described in section 5.4.3 are designed to be used as 

high contrast fiducials for finding optimal focus before collecting LC-TEM data 
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sets. For samples which are sensitive to electron irradiation, either for damage 

events or initiation of particle nucleation, the electron dose on the sample prior to 

data collection must be kept minimal to avoid aberrant time zero results. While 

this is well characterized for cryo-EM (220, 221), it is considerably more difficult 

for LC-TEM experiments. Primarily this is due to the lack of features available for 

focusing and for LC-STEM imaging is exacerbated by the narrow depth of focus 

caused by the high convergence angles used to form STEM probes. Figure 5.11 

Figure 5.11: a) Optical image of multiwindow device patterned with grid bars. b) In-situ image of grid bars 
assembled within a liquid cell. c) Demonstration of “low dose” imaging of 10 nm gold nanoparticles 
depicting the “search”, “focus”, and “acquire” steps to minimize electron irradiation of the region of 
interest prior to imaging. Scale bars are 500 µm, 20 µm, 10 µm, 500nm, and 500nm respectively. 
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depicts the structure of and use of patterned grid bars in a low dose imaging 

regime. An optical image of a 5 window device with grid bars is shown in Figure 

5.11a, where grid bars are shown bisecting the center of each window on the 

device. A single imaging window formed by assembling two devices in a liquid 

stage holder is shown in Figure 5.11b. The high contrast grid bars are clearly 

visible against the liquid background and the edges display roughness which can 

be used for precise focusing during imaging. A demonstration of low dose 

imaging is shown in Figure 5.11c, depicting the “search”, “focus”, and “exposure” 

modes used for minimizing electron dose on a sample prior to collecting an 

image. “Search” is typically low magnification, high refresh rate, and minimal 

electron flux and is used to find a region of interest for image acquisition (outlined 

by the dashed orange box). Prior to exposure, the beam is centered over a 

nearby grid bar for focusing (blue box) and the beam is blanked and 

magnification is increased. In the “focus” mode, precise focus is found on the grid 

bars  at high magnification, such that the region of interest containing the sample 

to be imaged is not irradiated by the electron beam in this step. After focus is 

found, the beam is then blanked again and magnification is reduced back to the 

“search” magnification. The beam is then centered over the region on interest 

(orange box), and the beam is once again blanked as imaging settings are 

changed to the optimal “exposure” settings. The beam is then unblanked and a 

single, time zero image with minimal prior electron irradiation is collected near 

optimal focus. The final image shown in the “exposure” mode is of 10nm gold 
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nanoparticles that are adhered to the same window that the grid bars are 

patterned on. 

While an effective imaging method to reduce irradiation on the sample prior to 

image collection, it should be noted that there are still several limitations reducing 

the precision of these grid bars. The membrane bulging effects described in 5.2.1 

result in an effective change in eucentric focus for the membrane surface which 

changes depending on the x and y position that focus is found at. Manual 

focusing thus still results in some small variations between the optimal focus 

found at the “focus” position and the optimal focus at the “exposure” position. The 

possibility for automated focusing software to perform surface modeling by 

finding optimal focus at several points along the grid bars and determining the 

most likely focus value for the exposure region would provide more accurate 

imaging and vastly improve the throughput of the technique. It should also be 

noted that optimally the grid bars be located on the upper window and the 

sample of interest be near or at the upper membrane. This ensures that the focus 

plane found by focusing on the grid bars is on the same plane as the sample of 

interest, and reduces image artifacts caused by beam broadening effects of thick 

samples (219). 

5.6 Electron Irradiation History 

The dynamic, liquid environment of the liquid cell introduces unknown variables 

related to the production of radial species and their damage of the sample of 
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interest as a result of electron irradiation. A significant number of recent 

publications in the field have been aimed towards understanding the role of 

electron-liquid interactions (102), although the effect of large cumulative electron 

fluxes and its effect on serial experiment acquisition was not characterized before 

the work described here. 

5.6.1 Lateral Diffusion of Radiolysis Products 

While advantageous, the increased imaging area empowered by the multi 

window devices described in section 5.4 raises a fundamental question about the 

mobility of radical species generated from electron irradiation of water. Numerical 

simulations of the generation and reaction of radiolysis products under TEM 

relevant conditions suggest that the most reactive species, aqueous electrons, 

OH•, and H• radicals react rapidly with the bulk water solvent just outside the 

area irradiated by the electron beam (102, 104). Although other less reactive 

species such as hydrogen and oxygen gas can be present in significant 

concentrations up to microns away from the irradiated region their role and effect 

on the sample chemistry is not well understood. It is not known how damage 

products produced in one window may diffuse to an adjacent window and impact 

the sample in that region prior to imaging. Commonly, damage products are 

observed outside the area irradiated after imaging has occurred (97). Figure 5.12 

illustrates this behavior, where Figure 5.12a shows the first frame of a video of 

irradiation of a 0.1 mM solution of AgNO3 under an electron flux of 0.51 e-/Å2. 

Particles can be seen beginning to nucleate and precipitate under the reducing 
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potential of the radiolysis product generated by the electron beam. Importantly, 

only the area within the field of view in this image is being irradiated by the 

electron beam. Figure 5.12b shows the final frame of the same video, where 

particles nucleated in the first frame have grown larger over the duration of the 

video. Figure 5.12c then shows a wider field of view of the same region 

immediately after the end of the video. Particles can be seen outside the 

irradiated region, with the size and number decreasing with increasing distance 

from the irradiated area. It is unclear if these particles grown outside the imaging 

area is the result of radiolysis products diffusing from the irradiated region and 

causing nucleation and growth outside the imaging area or particle nuclei forming 

within the irradiated region, and diffusing outside of the field of view while 

continuing to grow. Investigating the role of global cumulative irradiation is 

necessary in order to be certain that serially acquired data sets from a single 

device are representative of a sample that has been free of irradiation prior to 

imaging. 

Figure 5.12: a) Initial scan of a STEM experiment precipitating silver nanoparticles from an aqueous 
precursor. b) Final frame of the same region from (a) where the field of view has not changed. c) Lower 
magnification image of the region imaged through (a-b) showing the nucleation of particles outside the 
irradiated region. Scale bars are 400 nm (a-b) and 500 nm (c). 
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5.6.2 Biotin-Streptavidin Crystals 

Since the desired application for our systems is for biological imaging, ideally 

testing the diffusion of damage products can be evaluated with a biological 

system. Initially to track the role of increasing cumulative electron irradiation, 

biotinylated gold nanoparticles were anchored to a streptavidin monolayer 

through a biotinylated lipid monolayer deposited on the silicon nitride membrane 

using a Langmuir-Blodgett trough. The gold nanoparticles act as a reporter to a 

damage even when either the lipid, streptavidin, or biotin molecule is damaged 

and releases the gold nanoparticle from its anchor on the membrane. By tracking 

the position of the gold nanoparticles damage events can be tracked over time.  

Figure 5.13 shows the results of tracking the positions of particles under electron 

irradiation for two different areas (222, 223). Figures 5.13a and 5.13b maximum 

displacement of each particle from each frame of the acquired video. As 

evidence by the displacement of particles between 5.13a and 5.13b, the particles 

in the first video can be seen to have considerably larger displacements than the 

second video over the same time duration. Figures 5.13c and 5.13d show the x 

and y positions of each particle with increasing time, illustrating how the particles 

in the first video (5.13a and 5.13c) have large displacements and exhibit linear 

movement throughout the video. Conversely the particles in the second video 

(Figures 5.13b and 5.13d) have less displacement and stay largely in the same 

position over the experiment. This indicates that the movement seen in the 

particles in video 1 is the result of mechanical or electrostatic stage drift that is 
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often seen shortly after loading the sample into the microscope (224). This 

highlights the necessity for allowing stage drift to settle before data is acquired 

but also that drift based imaging artifacts should be considered when performing 

experiments which track the position and location of particles. 

Figure 5.13: a) Particle tracking data from the first video tracking the damage of Au nanoparticles anchored 
to the window via streptavidin-biotin linkers. b) Particle tracking data from the second video tracking 
damage, where the displacement of particles is much lower. c) Trajectories of particles tracked from (a), 
depicting uniform unidirectional motion indicative of mechanical drift. d) Trajectories of particles tracked 
from (b) depicting random motion. 

 
 



106 

5.6.3 Catalase Crystals 

Another mechanism for tracking damage over multiple exposures could be 

tracking the fading of reflections in 2D catalase protein crystals as described for 

cryo-EM in Chapter 3. Catalase crystals were loaded into the liquid cell and 

imaging was attempted to collect both diffraction and real space images. Figure 

5.14a shows a BF-TEM 2D catalase crystal in liquid, where 5.14b shows a 

magnified region of 5.14a taken with low dose imaging techniques. The liquid 

thickness proved to be too thick to obtain images with any of the samples loaded, 

where reflections were not found in the FFT of real space images or in diffraction 

patterns taken of regions containing crystals. Likely the lack of resolution is due 

to high thickness of the liquid cell, where stacking of the crystals can result in 

considerable thicknesses which will dictate the minimum spacing. As such 

another method was necessary to track damage over time. 

Figure 5.14: a) Low magnification image of 3D catalase crystals in a liquid stage. b) High magnification 
image of region outlined by orange box in (a) showing high noise and low signal common in very thick 
samples. 
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5.6.4 Silver Nitrate Precipitation 

The precipitation of metal nanoparticles from an aqueous precursor is well 

characterized and represents the bulk of published material from LC-TEM (71, 

97, 100, 225-228). The reduction of aqueous silver nitrate in particular has been 

well described (71, 98, 105), where both reaction and diffusion limited growth 

regimes have been demonstrated depending on precursor concentration and 

electron flux (98). As such this system presents an ideal way for studying the 

effects of cumulative electron irradiation on growth kinetics for serially acquired 

data sets. Figure 5.15 shows data collected from a single multi window device 

which was loaded with a 0.1 mM AgNO3 precursor. STEM imaging was 

performed with an electron flux of 0.51 e-/Å2 for 20 minutes as silver 

nanoparticles were nucleated and grown on the silicon nitride windows. Figure 

5.15a shows a map of the window regions where the red numbers are the 

location and order of STEM videos which were acquired. Figure 5.15b shows 

frames from different time points of STEM videos at the same time points, 

corresponding with videos 2, 6, and 12. The appearance and growth of particles 

can be seen in these frames, where tracking analysis was performed on each 

video data set to track the size of the particles over the duration of the video 

(222, 223). 

Figure 5.15c shows the mean particle diameter for each video, where the growth 

rate of particles in each video follow a t1/2 power law, indicating reaction limited 

growth (229, 230), independent of the order of acquisition. This indicates that for 
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at least the distance separating the experiments in these experiments they are 

far enough apart for the growth kinetics to not be impacted by irradiation products 

Figure 5.15: a) Window map depicting windows (black numbers) and experiment locations (red 
numbers). b) Frames of experiments 2, 6, and 12 showing the precipitation and growth of silver 
nanoparticles from a silver nitrate precursor. c) Plot of mean particle diameter increase over time for 
each experiment. d) Total number of particles nucleated for each experiment. 
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from a previous experiment. Importantly, experiments performed closer together 

or growth kinetics which are diffusion limited may display increased sensitivity to 

irradiation history but should be determined for each system in order to reduce 

potential imaging artifacts. One potential artifact observed however is a decrease 

in nucleation rate with increasing electron irradiation history. This behavior is 

illustrated by Figure 5.15d, where the number of particles nucleated for each 

video decreases as a function of increasing cumulative global electron flux. While 

the holder which was used for these experiments was capable of flow to the 

imaging area the experiments were performed in a static environment. It was 

thought that this may be the result of a depletion of the precursor solution, but it 

was also considered that a changing volume as a result of a wedge-shaped 

sample and changing thicknesses could also affect nucleation behavior by 

changing the effective concentration of radiolysis products (231). For the data in 

Figure 5.15 the thicknesses for each imaging region was unknown and could not 

be determined for certain if the decrease in nucleation rate was a result of 

depletion or thickness changes. 

Growth experiments were repeated for both 0.1 mM and 0.5 mM AgNO3 

precursor solutions both with and without flow of fresh precursor to the imaging 

area. The thickness of each imaging region was measured with EELS in order to 

ensure that the thicknesses of each experiment is equivalent. Figure 5.16a and 

5.16b shows results from a 0.1 mM solution without flow of fresh precursor. 

Figure 5.16a is the final frame of each experimental video, while 5.16b is the 
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thickness in IMFP corresponding to each experiment location from 5.16a. The 

thicknesses for each imaging window can be seen to be largely equivalent, while 

visibly the number of particles in the last frame from 5.16a can be seen to 

Figure 5.16: a) Final frames of silver nanoparticle growth experiments with no flow where the location of 
each image represents the window within the grid that experiment was performed at. The blue star notates 
the first experiment and the orange triangle notates the final experiment. b) Thickness measurements in 
IMFP for each experiment corresponding to locations in (a). c) Same as (a) but fresh precursor was flowed 
at a rate of 0.5 µL/min. d) Thickness measurements in IMFP for each experiment corresponding to 
locations in (c). e) Particle counts for experiments without flow for both 0.5 mM (orange) and 0.1 mM 
(blue) silver nitrate precursor solutions. f) Same as (e) but for experiments with flow of fresh precursor. 
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decrease with increasing experiment number. Figure 5.16c and 5.16d are 

experiments performed identically to the ones in 5.16a and 5.16b but during the 

course of imaging precursor solution was flowed to the imaging area at a rate of 

0.5 µL/min. Figure 5.16d shows effectively equivalent thicknesses for each 

experiment taken relative to each other and also the data taken in 5.16a-b. For 

these experiments however, particles continue to nucleate for each experiment 

regardless of the history of electron irradiation. Figure 5.16e-f show the number 

of particles nucleated with increasing cumulative electron flux for both 0.1 and 

0.5 mM AgNO3 solutions both with and without flow. For each, regimes without 

flow show a reduction in particle nucleation rate by the final experiment, while 

regimes with flow show consistent nucleation even until the final experiment. This 

demonstrates that for some experiments, the total cumulative electron flux can 

be an important factor in the observed results, necessitating careful 

characterization of the sample under observation to be sure that observed results 

are representative of a sample which has not yet received previous irradiation 

effects. Biological samples are especially susceptible as described in the next 

section. 

5.7 Imaging Whole Cells with LC-TEM 

Imaging biological structures with LC-TEM additionally needs to take special care 

to control the history of electron irradiation on the sample as beam damage can 

drive morphological changes which can be misinterpreted as physiological 

behavior or morphologies if not careful (193). The focus aids described in 5.5 as 
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especially important for acquiring in focus images of whole cells within minimal 

irradiation prior to image collection. Figure 5.17 shows images of organisms 

acquired in LC-TEM using these focus aids in a low dose imaging regime as 

described in section 5.5. All images were collected at a flux of 0.5 or 1 e-/Å2 with 

minimal flux prior to image collection. Figure 5.17a-c are of the organism 

Cupriavidus metallidurans, where 5.17a is a low magnification image during the 

Figure 5.17: a) Low magnification of liquid cell where grid bars are visible with a cluster of cells near the 
center (outlined in blue). b) Image of region outlined in (a) of C. metallidurans. c) Enlarged region outlined 
in (b) showing internal details and cell membranes. d) Biotinylated nanoparticle labeling of bacteria in the 
liquid cell. 
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“search” mode of low dose imaging. 5.17b is an image of C. metallidurans cells 

from the region outlined in 5.17a, while 5.17c is a cropped section of 5.17b 

highlighting the membranes of the cells and some internal structures. Figure 

5.17d is a bacterium which has been labeled with 10 nm biotinylated gold 

nanoparticles, demonstrating the ability for cellular labeling of structures which 

may not be resolvable without some kind of labeling aid. 

5.7.1 Electron Damage of Whole Cell Structures 

Beam damage is a critical consideration of electron microscopy of biological 

samples, where the incident electron beam can break bonds of the sample 

molecules through primary and secondary damage (193). For biological samples, 

electron beam-sample interactions are perhaps most well characterized for cryo-

EM, where artifacts such as resolution loss, particle movement, and bubble 

formation has been characterized as a function of increasing electron flux (198, 

232-234). With liquid samples however, radiolysis and its products can cause 

further damage with the ability of the generated radical species to react with the 

sample and cause morphological changes. While the results in section 5.6 

suggest that the radical species in one imaging region do not diffuse far enough 

away to cause damage in an adjacent region, the effects of cumulative electron 

flux on a single sample have not been well characterized for liquid samples.  

To evaluate the effects of electron flux on a biological sample, C. metallidurans 

was imaged with LC-TEM. Low dose imaging techniques in combination with 

patterned focus bars described in section 5.5 were used to minimize electron 
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irradiation of the cells prior to image collection. Figure 5.18 shows a damage 

series taken of cells, where the first frame shows a BF-TEM image of cells 

acquired with an electron flux of 1 e-/Å2. Within this first frame internal structures 

are clearly visible, and the beam was blanked for 20 minutes with the expectation 

that some morphological changes or physiological processes may be observable 

from the internal features that are visible. The next image was acquired with an 

electron flux of 1 e-/Å2 for a total cumulative flux of 2 e-/Å2. This was repeated two 

more times for a final cumulative flux of 4 e-/Å2. By the second frame, and even 

Figure 5.18: a) Damage series of C. metallidurans at increments of 1 e-/Å2 for each frame. b) Outline of 
cells in the first frame of (a) projected over each subsequent image depicting cell shrinking with increasing 
cumulative electron irradiation. c) Magnified view of region depicted by red box in (a) showing cell 
membranes withdrawing from a metal nanoparticle on the silicon nitride surface. 
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more apparent by the 4th frame, cellular changes are visible in the form of the 

cells shrinking relative to their initial position, which has been reported previously 

for other cells imaged with LC-TEM (116). 
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6 Chapter 6: Nanofluidic Platform for Directed Flow and 
Enhanced Environmental Control 

6.1 Introduction 

The improvements to imaging area described in Chapter 5 were able to solve 

some issues of reproducibility and increase the sampling capacity of individual 

LC-TEM experiments. However, inconsistencies in thickness variation between 

separately assembled devices and the ability for liquid flow to bypass the imaging 

area continue to constrain the science applications of the technique. While 

current holder designs may allow for enhanced control over thickness, the 

strategy of flow for current commercial solutions for LC-TEM do not allow for 

practical solutions for solving issues related to bypass of flow. I therefore set 

about redesigning both the nanofluidic holder as well as the nanofluidic devices 

to overcome these limitations. Chapter 4 highlighted how the design of current 

commercial holders are limited by available imaging area, thickness 

reproducibility, and bypass of flow. The issues of constrained imaging area were 

solved by changing the fabrication protocol as described in Chapter 4. 

Importantly, those modifications are equally transferable to the new devices that 

will be described below, although they will not be discussed specifically.  

The strategy for solving issues related to thickness reproducibility and bypass of 

flow is illustrated in Figure 6.1. The strategy for assembling devices with current 

commercial devices entails manually sandwiching a liquid sample between two 

devices. This method is sensitive to environmental contaminants or 
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nonhomogeneous samples which have a tendency to clump together or sit on top 

of spacer material that is supposed to dictate the sample thickness. The devices 

outlined here for the new platform are bonded together during fabrication, both 

sealing the devices and dictating the channel for fluid flow. This strategy ensures 

that the thickness of the subsequent liquid layer is precisely dictated by the 

thickness of the patterned spacers, where cleanliness is ensured by fabrication 

inside a class 1000 clean room. The holder which holds the devices are designed 

such that flow occurs directly from the microfluidic lines into the fluid channel 

within the devices. Figure 6.1 shows this regime, where flow enters the devices 

through a vertical flow channel etched into the bottom of the devices. Sealing of 

these channels against the holder is achieved with o-rings, which restrict the 

Figure 6.1: a) Cross sectional view of a directed flow imaging strategy depicting the sealing and 
delivery of flow to the imaging region. Features in this image are to scale. b) Top down view 
illustration of a directed flow holder demonstrating how liquid sample is forced to flow over the 
image area minimizing bypass of flow. 

 
 



118 

liquid flow from any direction except for into the vertical flow channel and inside 

the devices. The bonding and spacer material also acts as a microchannel which 

forces the liquid sample to flow directly to the imaging area. Multiple windows can 

be fabricated in these devices, where the lack of a sealing o-ring around the 

etched windows means that the only constraint for window size is the aperture in 

the lid and holder, allowing for larger and potentially more windows than the five 

that has been optimized for the other commercial holders. After flowing across 

the imaging area, the fluid channel delivers the liquid sample to another vertical 

flow channel and an outlet microfluidic line. This strategy of flowing sample 

vertically into a flow channel has been described before, although the published 

systems only have a single inlet and a single outlet channel (76, 92, 93, 95, 235). 

This strategy would not only allow for reliable control over the thickness of the 

sample, but the directed flow regime would also permit mixing to happen inside 

the devices rather than outside. Mixing is advertised as a feature for some 

commercially available holders  (125), but the mixing in these holders happens 

outside the actual devices and far away from viewing area meaning the reaction 

products can mix and observed results at the imaging area are not true time zero 

observations. Further, it is not clear what kind of “filtering” effect the devices have 

on what makes it in between the devices to the imaging area versus what flows 

around the devices such that the representativeness of the observations made at 

the imaging area may be questionable. The directed flow strategy outlined below 
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was designed to overcome this issue, where mixing reactants do not meet until 

just before the imaging area. 

6.2 Design of Nanofluidic Holder 

When designing custom holders for FEI and JEOL transmission electron 

microscopes, the holders can be divided into three segments, each which 

performs a different function and has different design constraints. The first is the 

design of the shaft of the holder, which is responsible for triggering and actuating 

the load lock mechanism for insertion into the microscope column, as well as 

creating a seal against the wall of the load lock chamber to prevent vacuum loss. 

The second is the design of the tip of the holder which holds the sample, 

microfluidic tubing for sample flow, and o-rings for sealing in the case of liquid-

cell holders. Finally, the body of the holder is the portion which sits entirely 

outside the microscope, and contains bulkheads and housing for microfluidic 

tubing, electrodes, as well as being a surface for handling the holder during 

removal/insertion and sample loading. Especially for the first two components, 

the tip and shaft, very precise tolerances need to be met in order to fit within the 

microscope. The sections below will describe how these tolerances are 

determined, replicated, and manufactured for each component of both FEI and 

JEOL microscopes. 
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6.2.1 Thermo Fisher/FEI 3 Port 

Holders for Thermo Fisher/FEI microscopes have the highest constraints on the 

dimensions of the tip due to the design of the microscope pole pieces and 

goniometer. To determine both the tolerances for replicating the shaft to fit the 

microscope goniometer multiple holders were measured using a set of electronic 

calipers. With this method average values of holder diameters, and distances 

between critical features, such as the tip, the body, the pin, and o-ring were 

determined so machining could be performed within the tolerances necessary. 

6.2.1.1 Thermo Fisher/FEI Shaft 

Figure 6.2a illustrates a fully assembled liquid stage holder for use with 

goniometers found on Thermo Fisher/FEI microscopes. The red arrow in Figure 

6.2a points to the base of the shaft, which rests against the outside of the 

goniometer. The design for the body of the holder should be flush with this 

surface to allow for the holder to be fully inserted into the microscope. 

Proceeding to the right down the length of the holder, the blue arrow highlights 

the diameter of the shaft which sits just inside the goniometer. The diameter of 

this region of the holder should be measured closely, as this section of the holder 

is responsible for triggering two microswitches that sit just inside the goniometer. 

One microswitch triggers the load lock cycle during the holder insertion phase, 

and the other microswitch allows the gun blank to be disengaged once the 

sample is fully inserted. If the diameter of the shaft is not large enough one or 

both of these microswitches may not be engaged, preventing use of the holder. 
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The next critical feature is marked by the white arrow and notes the position of 

the sealing o-ring for the holder. The distance of this o-ring from the base of the 

holder (marked by the red arrow) is a critical dimension, and the width and depth 

of the o-ring groove are critical to ensure proper sealing against the vacuum of 

the instrument. After the o-ring the orange arrow notes a pin that projects 

vertically from the shaft of the instrument. The location, orientation, and size of 

this pin is important as it actuates the valve mechanism of the load lock which 

allows the holder into the microscope during insertion. The distance from this pin 

to the o-ring and the base of the shaft is important to make sure the holder sits in 

the correct location when inserted. Additionally, the pin should be parallel to the 

direction the electron beam is transmitted relative to the orientation of the tip to 

ensure the tip of the holder is normal to the electron beam. Finally, the end of the 

holder and the tip is noted by the black arrow. The distance from the electron 

imaging area in the tip (in this case the aperture around the electron transparent 

Figure 6.2: a) CAD model of a complete holder for use in a Thermo Fisher/FEI microscope. Critical 
dimensions are labeled on the shaft on the holder where the base (red arrow), microswitch trigger (blue 
arrow), shaft o-ring (white arrow), pin (orange arrow), and viewing aperture (black arrow) are depicted. b) 
Exploded view of 3 port holder showing o-rings, devices, lid and pins for alignment. The two stage 
assembly of the tip is depicted where microfluidic lines would additionally run through the tip. 
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membranes) to the base of the shaft is critical to ensure the imaging area sits 

within the path of the electron beam. If this dimension is too short or too long 

then the imaging area will not be visible even at the x and y maximums of the 

goniometer. All dimensions were measured across several known commercially 

purchased holders and averaged to find the tolerances for each dimension. 

Measuring manually by hand with electronic calipers proved to be accurate 

enough to allow for machine of a shaft that met specifications for the Thermo 

Fisher/FEI microscope goniometers. 

6.2.1.2 Thermo Fisher/FEI Tip 

Figure 6.2b shows an exploded illustration of the liquid tip including the 

microfabricated devices with the fluidics channel and electron transparent 

windows, as well as the o-rings used for sealing. The horizontal channels which 

hold 360 µm microfluidic tubing are visible (although the microfluidic tubing is 

omitted from this illustration), each of which terminate at their respective vertical 

flow channel and sealing section with o-rings. Because the tolerances of these 

lines are very small and the length to mill through the tip is far, the tip was 

designed to be machined in two sections. One the left side of Figure 6.2b is the 

portion of the tip which contains an o-ring groove which seals against the shaft of 

the tip to maintain hermeticity of the holder. This section also is tapped for 

screws to ensure the tip stays secure in the end of the shaft and stays square to 

the shaft pin (orange arrow in Figure 6.2a). To ensure proper alignment of the 

base of the tip to the second portion alignment pins are used which also provides 
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rigidity and support at the joint between the two components. The right portion of 

the tip in Figure 6.2b holds the microfabricated devices which seal with o-rings. 

The lid (rightmost component of Figure 6.2b) fits onto the tip, where the dovetail 

design ensures that the rails in the lid compress the devices onto the o-rings for 

proper sealing. The very end of the tip is tapped for a small screw to secure the 

lid in place and prevent it from sliding off during operation. The maximum 

dimensions of the tip were also determined by measuring the largest known 

commercially available holder tips and ensuring that the dimensions of the tip 

described here were within those tolerances.  

6.2.2 JEOL 5 Port 

Similar to the Thermo Fisher/FEI holder, dimensions for a holder to fit JEOL 

TEMs was determined by measuring several commercial holders made for JEOL 

TEMs. The shaft design is considerably different than the Thermo Fisher/FEI 

shaft, although still relies on a dynamic o-ring which seals the shaft to the 

goniometer against the vacuum of the column. One difference is the tip for JEOL 

holders is considerably wider than the Thermo Fisher/FEI holders, allowing for a 

wider liquid tip which can hold more fluid lines. As a result, two additional flow 

lines were able to be added to the design for directed flow liquid holders for JEOL 

microscopes. 
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6.2.2.1 JEOL Shaft 

Figure 6.3a shows a JEOL holder, where critical measurement points are noted 

by arrows. Similar to the Thermo Fisher/FEI holder, the base of the shaft is 

marked by the red arrow in Figure 6.3a. The body of the holder should be flush 

with this surface allowing for the base to sit up against the goniometer of the 

microscope. Inverse of the Thermo Fisher/FEI shaft the pin on the JEOL shaft is 

before the sealing o-rings and is marked by the orange arrow in Figure 6.3a. This 

pin is responsible for triggering the airlock cycle as well as actuating the valve 

mechanism after the load lock cycle to allow the holder into the column. The 

distance from this pin to the base of the shaft is a critical dimension to ensure the 

holder sits at the correct location in the column. The next features are the sealing 

o-rings, where the JEOL shaft has 2 o-rings compared to the single on Thermo 

Fisher/FEI shafts. It should be noted that the size of the o-rings and groves are 

different sizes, although very similar. The spacing of these o-ring grooves and 

their distance to the base of the shaft is important to ensure proper sealing. 

Finally, the black arrow in Figure 6.3a shows the location of the tip which holds 

the sample. The distance between the imaging area to the base of the shaft 

should be precisely measured to ensure the sample sits in the path of the 

electron beam for imaging. Several commercially purchased JEOL holders were 

measured with electronic calipers to determine the tolerances for each dimension 

for replication. 
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6.2.2.2 JEOL Tip 

Figure 6.3b shows an exploded version of the 5 port liquid tip to fit to the end of 

the JEOL shaft. In the same manner as the Thermo Fisher/FEI liquid tip it is 

fabricated in two sections and assembled with a vacuum grade epoxy. An o-ring 

groove is located on the section of the tip which interfaces with the shaft to 

achieve hermetic sealing, and holes on the face allow screws to secure the tip at 

the end of the shaft. Figure 6.3b also shows how the wider tip allows for two 

more fluidic lines which results in larger microfabricated devices. O-rings seal 

against the vertical flow channels of the devices and a similar dovetail design of 

the tip and lid compresses the o-rings against the bottom of the device to ensure 

sealing. The lid is also secured by a screw which threads into a hole tapped in 

the end of the tip.  

Figure 6.3: a) CAD model of a complete holder for use in a JEOL microscope. Critical dimension on the 
shaft are labeled by arrows, the base (red arrow), pin (orange arrow), shaft o-rings (white arrows), and 
imaging aperture (black arrow). b) Exploded view of 5 port holder depicting o-rings, devices, and lid. 
Assembly is also achieved in a two component fashion and sealed with a vacuum grade epoxy. 
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6.3 Fabrication of Nanofluidic Devices 

The devices for the directed flow holders described in section 6.2 are fabricated 

in a similar fashion to the devices described in chapters 4 and 5, where free 

standing electron transparent membranes are fabricated by a combination of dry 

and wet etching. Differently however, the directed flow devices are bonded 

together during the fabrication process to hermetically seal the flow channel 

through wafer bonding techniques. As a result of the design, there are two 

different devices to be fabricated, an upper and a lower device. Each upper and 

lower device has identical masks for spacer patterning, but the mask for 

patterning the windows and vertical flow channels differs between the upper and 

lower device. The sections below describe the mask designs for both the Thermo 

Fisher/FEI 3 port and JEOL 5 port directed flow holders, followed by a description 

of their fabrication. 

6.3.1 Design of 3 Port Devices 

Figure 6.4 shows the mask design for devices used with the Thermo Fisher/FEI 3 

port holder described in section 6.2. Similar to the devices described in chapters 

4 and 5 the devices are sectioned by patterning a 40 µm width channel around 

the edges of each device. The final size of each device is 5.46 mm in length and 

3.46mm in width. Since these devices are larger than the ones described for 

commercial devices in chapters 4 and 5 the borders have 100 µm segments left 

in the edges to provide stability during the etching phase to prevent the devices 

from falling apart too easily in the KOH bath. The windows are fabricated in the 
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same manner, where each window is 40 µm in width, and the windows for the top 

device are rotated 90 degrees with respect to the bottom device. The diameter of 

the aperture for beam transmission is 1.25 mm, shown by the red circle in Figure 

4a. It should be noted that the size of this aperture is not constrained by a sealing 

o-ring due to the different sealing strategy for the directed flow holder. Therefore, 

it theoretically could be possible to machine a larger aperture which would allow 

for substantially more imaging area in future iterations. For the bottom device, 

vertical flow channels 250 µm in width and height are patterned, which are 

etched simultaneously to the windows and device borders. The design in Figure 

6.4a is of the bottom device with the vertical flow channels, where the difference 

in the upper device is a lack of flow channels and a 90 degree rotation of the 

windows.  

Figure 6.4b shows the mask design for patterning the spacer and bonding 

material, as well as dictating the flow channel. The terminal positions of the 

channel is the location of the vertical flow channels. Although a number of 

Figure 6.4: a) Mask design for multiwindow devices which for use with the 3 port holder. b) Illustration of 
devices produced using the mask depicted in (a). 
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different designs were tested for bonding designs, the most successful design 

was the solid design shown in Figure 6.4b where the upper and lower devices 

have the same pattern design. 

6.3.2 Design of 5 Port Devices 

Figure 6.5 shows the mask design for devices which fit the JEOL 5 port directed 

flow holder described in section 6.2. Devices are similar to the 3 port devices 

described in section 6.3.1, where 5 port devices are larger to accommodate 2 

extra vertical flow channels. The final device dimensions are 4.7 mm in width and 

5.2 mm in length. A 40 µm channel surrounds the border of the device, with 100 

µm sections spaced midway down the sides and at corners to provide additional 

support during etching. The windows and flow channels are identical in design to 

the 3 port, with the addition of two extra flow channels in the 5 port. If the position 

of the flow channel in Figure 6.5 is not annotated it is centered with respect to the 

length or width axis of the device. Again, in the same way as the 3 port, the only 

difference in the upper device is the lack of vertical flow channels and rotation of 

the windows with respect to the lower device. 

Figure 6.5b shows the mask for patterning the flow channel and spacer/bonding 

material, where each channel terminates at one of the vertical flow channel 

locations and is also a solid film design as has been determined with optimum 

bonding. 
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6.3.3 Fabrication 

Masks detailed in Figures 6.4 and 6.5 are repeated to fill a standard 4-inch wafer 

with a maximum number of devices. In total, 3 masks are used to pattern two 

wafers. The first mask patterns for thin film deposition and is used for both wafers 

for top and bottom devices. Another mask patterns the first wafer with windows, 

device borders, and vertical flow channels for the bottom devices, and the third 

mask patterns the second wafer with only windows and device borders.  

Initially both wafers are patterned for lift off deposition of the bonding material. 

The masks for flow channel design in Figures 6.4b and 6.5b are printed as 

negative masks for optimal lift off. Wafers were coated with the negative 

photoresist AZ 5214E at 3000 rpm for 60s. The wafers were then soft baked at 

90oC for 2 min, and the mask design was exposed for 2 seconds. The 

Figure 6.5: a) Mask design for multiwindow devices which for use with the 5 port holder. b) Illustration of 
devices produced using the mask depicted in (a). 
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photoresist was then reverse baked for 2 minutes at 120oC to reverse the 

photoresist and the wafers were left to equilibrate at room temperature for 10 

minutes. After a flood exposure for 30 s, the wafers were developed in AZ 

400K:water at a 1:4 ratio for about 45 s. The wafers were then loaded into a thin 

film deposition unit and pumped to vacuum. One wafer was coated with a gold 

film, where deposition was performed at 50W DC and a deposition pressure of 5 

mtorr. A 10-20nm chromium adhesion layer was deposited prior to the gold film 

to serve as an adhesion layer. The second wafer was coated with a thin film of 

silicon, where deposition was performed at 200W RF and a deposition pressure 

of 10 mtorr. After deposition lift off was performed in acetone with sonication 

followed by a soak in nanostrip 2x for cleaning. Thin films should be deposited 

with the target thickness of the final bonded devices in mind depending on 

application. 

At this point both wafers are patterned with the same design where one wafer 

has a thin film of polysilicon and one wafer has a thin film of gold. One wafer is 

then patterned with the mask design for the lower devices containing the vertical 

flow channels and the other wafer is patterned with the mask design for upper 

devices (lacking the vertical flow channels). At this point, etching is performed 

identically as to the methods described in chapter 4 and 5, where vertical flow 

channels, windows, and device borders are etched simultaneously. Once devices 

are etched and sectioned, they may be bonded together to create the hermetic 

seal and complete the flow channel. 
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6.3.4 Wafer Bonding 

Bonding of wafers to achieve hermetic sealing is a challenging process that is 

highly dependent on surface roughness and sensitive to cleanliness (236). Direct 

bonding strategies in particular require very low surface roughness, often below 1 

nm rms, and minimal wafer bow to achieve wafer level bonding (155, 158, 159). 

Chemical-mechanical polishing can be used to planarize surfaces to below this 

critical surface roughness, although the clean room this work was performed in 

lacked this capability. While magnetron deposition can generally produce thin 

films with very good surface roughness, a minimum surface roughness of 2 nm 

rms for deposited silicon oxide was achieved which was not able to be bonded 

using direct bonding techniques even when using plasma activation strategies 

described in literature. Thermocompression systems are also an option, where 

high heat and pressure are used to bond two surfaces together by softening the 

thin films and forcing them into contact (153). The high pressures used are often 

able to overcome limitations in surface roughness. Gold thermocompression was 

attempted for wafer bonding, although it was found that while the wafer bonder 

used for this work could achieve the temperatures needed for 

thermocompression bonding it could not reach high enough pressures to achieve 

adequate bonding. 

Eutectic systems may also be used for wafer bonding, which are advantageous 

since bonding can be achieved at lower temperatures (167). Gold and silicon 

each have melting temperatures greater than 1000oC, but have a eutectic 
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temperature around 370oC (165, 237, 238). This allows for bonding at 

temperatures and pressures that are achievable with the instrumentation 

available for this work. For fabrication of directed flow devices, the thin films 

patterned on the wafers were gold and silicon. Wafer level bonding is 

advantageous as the bonding is performed before etching of the free standing 

windows and sectioning of the devices. This helps reduce potential surface 

contaminants that can affect the bonding efficiency as well as improve the 

chances the fragile windows survive the bonding process. A downside however 

to etching the windows after bonding is that the KOH etch will also etch the thin 

film of silicon in the bonding layer. Multiple attempts were made to bond wafers 

together but at each point during the KOH etch step for window formation enough 

KOH was able to etch laterally along the sputtered silicon thin film that the wafers 

became unbonded during the etch process.  

As a result, window etching and device sectioning was performed prior to 

bonding, and individual devices were bonded together. This significantly reduced 

throughput and increases the chances of windows breaking during the bonding 

phase but was able to avoid the limitations of the silicon thin film etching away 

during the etch step. Individual devices were cleaned in nanostrip 2x at 110oC 

and then assembled in a jig to ensure alignment of the devices. The temperature 

was increased to 450oC which was higher than the eutectic point of the system to 

increase fluidity of the bonding films, and the platen pressure was increased to 

4000N. Bonding was tested at different time intervals, where the best results 
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were found for devices which were bonded for 60 minutes. After 60 minutes at 

450oC the temperature was turned off, although the pressure was not released. 

Cooling of the platens generally takes several hours, where the platen pressure 

was not released until the temperature had dropped below 200oC to reduce 

mechanical and thermal stress on the bonded films.  

Figure 6.6 shows 3 port devices which were bonded using the Au-Si eutectic 

system with the strategy described above. Figures 6.6a-b are devices that were 

bonded and separated after bonding. While regions of the gold and silicon thin 

films can be seen to have melted and bonded together there are regions that 

remained unbonded. As a result, hermeticity was not achieved with this device 

when it was pumped down to vacuum and did not seal properly. Figures 6.6c-d 

are devices that were bonded at the same conditions, but when tested did pump 

down to appropriate vacuum values for TEM imaging, and liquid was found over 

the windows. After the experiment, the devices were broken apart to inspect the 

surface of the films. As is seen in the images, enough force was applied to break 

the silicon substrate before the bond between the thin films was broken. Over the 

rest of the devices the bonding is seen to have much better coverage and 

uniformity across the films. 

While bonding can be achieved, another failure mode for the process described 

here is the membranes being damaged during the bonding phase. Figure 6.6e-f 

show images of windows after bonding, where the window in 6.6e can be seen to 

have a tear in it while the window in 6.6f is intact despite identical bonding 
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processes. The breaking of windows and incomplete bonding of some samples 

currently remains a challenge of the described process. Despite these limitations, 

bonded devices which were usable for LC-TEM experiments were achieved. 

6.4 Demonstration of Nanoparticle Mixing 

To demonstrate the ability for two initially separate samples to be introduced to 

the imaging area through each inlet channel and make their way to the imaging 

area, a nanoparticle flow experiment was performed. One liquid line flowed 50 

nm silver nanoparticles, while the second liquid line flowed 100 nm gold 

nanoparticles. The holder and devices were loaded into the microscope and 

imaged using HAADF-STEM imaging. The nanoparticle solutions were pumped 

into the holder using a syringe pump at a rate of 0.5 µL/min. Figure 6.7a-f show 

frames from a video acquired during particle flow, where particles are seen over 

the window area from the very first frame. Each frame shown in Figure 6.7 is 25 

Figure 6.6: a-b) Upper and lower devices separated after bonding where sealing was not achieved. 
Incomplete bonding regions are visible in the silicon and gold films. c-d) Upper and lower devices 
separated after bonding where sealing was achieved. In some areas the silicon substrate broke before the 
bond did. e) Image of a broken window after bonding. f) Image of intact windows after bonding. 
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STEM scans apart, where the time of 1 scan is approximately 3 seconds. The 

motion of individual particles was not captured due to the slow temporal 

resolution of the scans, but particles were clearly seen coming into view in 

locations where particles were not previously. After capturing the flow video, 

images were acquired sequentially over the entire window area, and they were 

stitched together to form the overview shown in Figure 6.7g. This demonstrates 

the ability not only for two unique samples to be directly flowed into a sealed 

nanofluidic device, but also that the distance between their inlet ports and the 

imaging area is far enough for the sample to diffusively mix into each other such 

that both samples are imaged together at the image plane.  

Some improvements and optimizations may still be possible with the bonding 

processes described here to increase throughput success rate. Additional 

Figure 6.7: a-f) Frames of a window in a directed flow holder during the flow of 100nm gold and 200 silver 
nanoparticles from different inlet lines. Both particle sizes are observed over the window area over the 
course of the experiment indicating mixing of the two solutions. g) Low magnification image of the entire 
window area after the experiment depicting many nanoparticles successfully flowed to the imaging area. 
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instrumentation may allow for better bonding strategies to be performed at the 

wafer level which would drastically improve the throughput of the process. 

Structures to bond the windows together to reduce window bulging effects may 

also be advantageous and could be performed during the wafer bonding step. 

These research areas will be the focus of my post-doctoral studies, where 

optimizing fabrication and bonding conditions will allow for enhanced science to 

be performed on biological samples with LC-TEM. Ultimately, these devices offer 

enhanced control of thickness reproducibility and environmental control for 

flowing and mixing samples in a manner not possible with other current 

commercially available systems. 
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7 Chapter 7: Optimizing Imaging of Low Contrast, 
Beam Sensitive Samples in LC-TEM 

7.1 Introduction 

In Chapter 5 the increased sensitivity of biological samples to the electron beam 

in LC-TEM was demonstrated, where beam driven morphological changes were 

observed with electron fluxes as low as 1 e-/Å2. While irradiation thresholds for 

the functional inactivation of proteins, enzymes, DNA, and other structural 

components of a cell remain unknown, it is likely that they will require 

substantially lower electron fluxes than those used for cryo-EM (239). As such, 

any imaging performed at irradiation levels below those that damage cells will 

likely have very poor contrast and poor SNR due to low signal levels. Identifying 

imaging modalities that provide the strongest contrast forming mechanisms and 

highest SNR values is critical to making the most out of the limited signal that will 

be used for image formation. In this chapter a comparison of different imaging 

modalities, SNR, and damage, is described for both cryo-EM and LC-TEM to 

compare the new methods against more established approaches. 

7.2 Comparison of Cryogenic and Liquid Imaging 

The majority of published biological structures determined with cryo-EM and 

tomography have been performed with BF-TEM, where the use of phase plates 

(45) and energy filters can further improve image contrast. Especially for imaging 

larger structures such as whole cells, the large depth of focus of BF-TEM allows 

for structures through the thickness of the sample to remain in focus. A 
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disadvantage of using BF-TEM for very thick samples however is the increasing 

effect of chromatic aberration on resolution with sample thickness (54, 219). With 

increasing sample thickness, the number of electrons which have experienced an 

inelastic collision increases. These inelastically scattered electrons are focused 

to different focal points by the objective lens compared with the elastically 

scattered electrons resulting in image aberrations which decreases the resolution 

of the sample. With multiple energy loss collisions, the coherence of the 

inelastically scattered electrons decreases such that they no longer contribute to 

the contrast of the image through constructive or deconstructive interference with 

the other electrons in the image. This chromatic aberration has been shown to 

have a significant impact on the resolution of images collected from thick 

sections of resin embedded cells (54) and has been simulated for liquids (219).  

STEM imaging can alternatively be used for imaging, where effects of chromatic 

aberration are not seen due to the lack of a post specimen objective lens. While 

TEM imaging is generally practically limited to bright field imaging, STEM 

imaging can collect signal for high angle annular dark field (HAADF), annular 

dark field (ADF), and bright field (BF) imaging, which may often be collected 

simultaneously. HAADF-STEM is often used for atomic resolution imaging of 

materials samples, as the z contrast image it produces can be advantageous 

over high resolution BF-TEM of similar samples. While STEM imaging has been 

performed on biological samples for negative stained resin embedded samples 

(54), and cryo-EM (52). While STEM imaging does not suffer from chromatic 
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aberration effects seen in BF-TEM, beam broadening effects can decrease 

resolution for very thick samples (240). As the resolution of a STEM image 

depends on the size of the probe, the broadening of the STEM probe through a 

very thick sample will decrease the resolution of structures towards the bottom of 

the sample. Furthermore, classic STEM uses very high convergence angles to 

minimize probe size for atomic resolution imaging. While this reduces the size of 

the probe, it results in a very narrow depth of focus, which for very thick samples 

introduces defocus artifacts in the final image (241). 

Low convergence angle STEM imaging is an alternative strategy for imaging 

thick, low contrast samples to overcome issues of defocus artifacts. This has 

been discussed extensively in theory (51, 219, 240-242), and demonstrated 

experimentally to give advantageous contrast and resolution over BF-TEM for 

resin embedded and cryo-EM sections of cells (52, 54). While the application of 

low STEM imaging for LC-TEM has been discussed (119), a comparison of 

imaging modalities for cells imaged with LC-TEM has not yet been performed 

experimentally. Furthermore, for the published work on whole cells imaged with 

LC-TEM images obtained lack resolution and detail when compared with whole 

cell imaging done on cryo-EM samples. It is unclear why this discrepancy exists 

between LC-TEM and cryo-EM images, whether simply the effect of large 

thicknesses in LC-TEM or if there are other contributing factors which degrade 

image resolution and contrast.  
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To address this limitation the organism Cupriavidus metallidurans was imaged 

with both LC-TEM and cryo-EM and across several imaging modalities to 

determine which modalities give the strongest contrast and signal to noise ratio 

(SNR). Cells were imaged with bright field TEM (BF-TEM), energy filtered TEM 

(EFTEM), low convergence angle STEM and high convergence angle STEM. To 

accurately quantify differences between images it is important to ensure that 

thicknesses between samples remains consistent. Chapter 5 demonstrated the 

effect of changing thicknesses on image contrast and SNR, where internal 

cellular structure is lost with increasing sample thickness. To control for changes 

in thickness electron energy loss spectroscopy was used to quantify the sample 

thickness for every image obtained. The thickness can be estimated in inelastic 

mean free paths (IMFP), which is measured using the log ratio method (124, 243, 

244). For reference, 300 keV electrons have an IMFP of ~180nm in pure water.  

Additionally, for each imaging modality the incident electron flux was kept 

constant at 1 e-/Å2 to ensure that comparison between different imaging 

modalities observes differences in image formation differences rather than 

differences in electron flux. While the field of view differs slightly in each image 

due to differences in magnification and image projection for different detectors, 

the total electron flux for each image was kept constant. For TEM imaging, both 

BF-TEM and EFTEM, the condenser aperture was 150 µm, the objective 

aperture was 40 µm, the beam current was 3.3 nA, the beam diameter was 11.45 

um, and the exposure time was 1 s. For STEM imaging, the condenser aperture 
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was 50 µm, the beam current was 21 pA, the pixel dwell time was 3.2 µs, and the 

semi-convergence angle was 17.8 mrad or 5 mrad. 

7.2.1 BF-TEM 

Figure 7.1a shows a BF-TEM image of cells acquired in a liquid cell. The 

measured thickness of the water layer near the cells was 1.96 IMFP. Contrast in 

the image is strong, and the cells are clearly visible against the background water 

in the sample. Some low contrast regions are visible in the cell, and particles of 

different contrast are associated with some of the cells. Figure 7.1e shows a 

comparable BF-TEM image of a cell obtained with cryo-EM. The measured 

thickness of the ice near the cell was 1.58 IMFP, making it the thinnest of all the 

images shown in Figure 7.1. The cell membranes are clearly visible, and the cell 

has strong contrast against the background.  

Figure 7.1: a) BF-TEM in liquid. b) Low convergence angle BF-STEM in liquid. c) High convergence 
angle BF-STEM in liquid. d) EFTEM in liquid. e) BF-TEM in ice. f) Low convergence angle BF-STEM in 
ice. g) High convergence angle BF-STEM in ice. h) EFTEM in ice. Scale bars are all 1 µm. 
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7.2.2 High Convergence Angle STEM 

Typical STEM imaging on the instrument used is performed with a convergence 

semi-angle of 17.8 mrad. This allows for a very small probe to be formed for 

atomic resolution imaging, but results in considerable geometric resolution 

degradation for samples which are out of focus (219). The narrow depth of focus 

for high convergence angle probes results in only a thin slice of a thick samples 

being in true focus while the rest of the sample will have out of focus imaging 

artifacts. Figure 7.1b shows a BF-STEM image taken with high convergence 

angle STEM imaging, where the thickness of the sample near the cell was 2.93 

IMFP. This was the thickest of all the samples imaged and displayed the poorest 

SNR and contrast. The cell is only weakly visible against the background 

although some high dentistry structures are still visible associated with the cell. 

Figure 7.1f shows a cryo-EM image of a cell imaged with high convergence angle 

BF-STEM where the thickness of the ice near the cell was 2.03 IMFP. Similar to 

the LC-TEM image the cell is only weakly visible against the background of ice 

and carbon, although some high density structures are still associated with the 

cell. 

7.2.3 Low Convergence Angle STEM 

By changing the strength of the condenser lens and decreasing the size of the 

condenser aperture just before the sample plane (typically condenser lens 2) the 

semi-convergence angle of the electron probe can be reduced. With a lower 

convergence angle the depth of focus can be increased, where defocus 
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aberrations contribute less to resolution degradation in the final image. 

Furthermore, the use of low convergence angles may result in stronger contrast 

in the BF image, converse to typical STEM imaging where HAADF-STEM often 

gives the image with best SNR. Figure 7.1c shows a BF-STEM, with a 5mrad 

semi-convergence angle, image of cells imaged in a liquid cell where the 

thickness of liquid near the cells was 2.29 IMFP. Cells have good contrast 

against the liquid background and both structures of low density and high density 

are observed associated with the cells. Figure 7.1g shows an image of cells 

imaged with low convergence angle BF-STEM frozen in vitrified ice where the 

Figure 7.2: Electron energy loss spectra from locations near cells in Figure 7.1, where the 
thickness of each sample was similar. 
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thickness near the cells was 2.27 IMFP. Contrast of the cells is similarly strong 

against the ice background and high density structures are visible associated 

with the cells. 

7.2.4 Energy Filtered TEM 

The use of an electromagnetic prism can be used to separate electrons by their 

energies after passing through a sample, where electrons which have undergone 

inelastic collisions and experienced an energy loss will be focused to a different 

point than their elastically scattered neighbors. The collection of this spectra of 

electrons is the basis of electron energy loss spectroscopy (EELS) where the 

energy loss during an inelastic collision is directly related to the energy of the 

electron orbital that the collision originated from allowing for elemental analysis of 

a sample. In addition to spectral information, the electrons can also be filtered by 

use of a “slit” which only allows electrons from a specified portion of the spectrum 

through. These electrons can then be used to form an image using only the 

electrons with energies specified by the position and size of the slit and is known 

as energy filtered TEM (EFTEM). While in theory the energy slit can be placed on 

the carbon edge to maximize contrast from the cell (composed primarily of 

carbon), the reduction in signal with this technique requires large integration 

times which can considerably increase the incident electron exposure of the 

sample. As LC-TEM imaging is likely to be limited by the electron irradiation 

sensitivity of biological samples, imaging strategies which require large incident 

electron fluxes are not practical for image formation strategies. Another option is 



145 

to place the slit on the zero-loss peak, which is the portion of electrons which 

have not experienced an inelastic collision and have not lost any energy. 

Importantly, the elastically scattered electrons from a sample are incoherent and 

do not contribute to the constructive/deconstructive interference of scattered 

electrons for phase contrast imaging, and as such only contribute to the noise 

signal in the image. By forming the image with only the elastically scattered 

electrons the SNR of the image can be improved by removing the inelastically 

scattered electrons. 

Figure 7.1d shows an EFTEM image of cells in a liquid cell where the thickness 

near the cell was 2.14 IMFP. The width of the slit was 30 eV and was centered 

on the zero-loss peak for image formation. Contrast for the cells is strong against 

the liquid background and both low density and high density structures are visible 

associated with the cells. Figure 7.1h shows cells frozen in a layer of vitreous ice 

and imaged with the same parameters as LC-TEM images where the ice 

thickness near the cells was 1.92 IMFP. Cells have strong contrast against the 

ice background similar to LC-TEM images and high density structures are visible 

associated with the cells. 

Figure 7.2 shows the EELS spectrums for each image from which the thickness 

in mean free paths was calculated from. In general, the thickness of all samples 

was around 2-2.3 IMFP. It is important to note that these thicknesses are not 

ideal as a result of sample thickness limitations of LC-TEM samples. As a result, 

the cryo-EM sample ice thicknesses were intentionally made thicker than ideal in 
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order for accurate comparison to the LC-TEM data. Automated plunge freezing of 

cryo-EM samples has allowed for highly reliable and thin ice thicknesses to be 

formed, where ideal thicknesses for cryo-EM of cells of C. metallidurans would 

be closer to 1-1.3 IMFP. The increase in thickness for both ice and liquid causes 

considerable loss of structural information, and as a result is not indicative of 

what may be maximally achieved with LC-TEM, but rather a comparison of 

imaging modalities at equivalent thicknesses. As LC-TEM grows as a technique 

and better instrumentation and sample preparation methods are implemented it 

may eventually be possible to achieve liquid samples which are closer to ideal 

thicknesses for maximizing resolution. 

7.3 Quantification of Signal to Noise Ratio 

While Figure 7.1 provides a qualitative comparison of differences between 

electron imaging modalities on image contrast and SNR, the visual 

representation of the image can be altered by the brightness and contrast 

settings of the image which is chosen by the individual presenting the data. In 

order to avoid potentially subjective presentation, and interpretation of the 

images the SNR was quantified for each image in order to directly compare 

differences between electron imaging modalities. In order to quantify the signal to 

noise of a single image both the noise component and signal component of the 

image must be known. Unfortunately, the type, distribution, and magnitude of 

noise in an EM image is unknown, and so the contribution of intensity from signal 

or from noise cannot be directly measured. The SNR can however be estimated 
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using the 2-dimensional autocorrelation function (ACF) of the image to estimate 

the signal power of the image, as has been described previously (245).  

𝑆𝑆𝑁𝑁𝑆𝑆 =  
𝛷𝛷11𝑁𝑁𝑁𝑁(0,0) − µ12

𝛷𝛷11(0,0) − 𝛷𝛷11
𝑁𝑁𝑁𝑁(0,0)

 

Equation 7.1 shows the calculation for SNR estimation from a single image 

where the noise energy (Φ11NF(0,0)) and signal energy (Φ11(0,0)) can be 

determined from the 2-dimensional ACF of the image (245). The mean value of 

the image (µ12) is measured simply as the mean pixel intensity of the entire 

image. Estimation was done using MATLAB, where 8bit images were read in as 

2D arrays of pixel intensity values from 0-255. The two dimensional 

autocorrelation function for the image was computed a gaussian curve was 

plotted around the maxima of the ACF (at the origin), where the noise energy of 

the image is the value of the ACF at the origin and the signal energy is the ACF 

value at the gaussian curve fit to the data. 

Figure 7.3: a-e) HAADF-STEM images with added white gaussian noise with increasing variance of 0.1, 
along with the two dimensional sample of the 2D ACF and fitted gaussian curve for each image. 
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With the noise energy, signal energy, and image mean determined the SNR of 

an individual image can be estimated. To confirm that the implementation of the 

SNR estimation method is working as described a single STEM image was 

duplicated and gaussian noise was added to the image with a known variance.  

Figure 7.3 shows these images, where the noise variance increased by 0.01 for 

each image in a-e. The simplified sections of the 2D ACF around the maximum 

value (at the origin) is shown for each image, where the orange line is the ACF 

values and the blue line is a gaussian curve fit to the data to estimate the signal 

power of the image. The calculated SNR is shown in Table 7.1, where it can be 

seen that the SNR decreases with increasing noise variance. This indicates that 

the described strategy for estimating the SNR of a single image was working as 

implemented. 

Table 7.2 shows the estimated SNR values for each image in Figure 7.1 using 

the single image SNR estimation method described above, where Figure 7.4 

shows SNR estimation process for the BR-TEM liquid and cryo-EM images. Of 

all the electron imaging modalities tested it was found that BF-TEM and EFTEM 

had the highest estimated SNR compared with STEM imaging. EFTEM likely 

Table 7.1: Estimated SNR Values from Images with Added Noise 

Figure a b c d e 

White Noise Variance 0 0.01 0.02 0.03 0.04 

SNR 4.8863 1.5743 1.0975 0.9046 0.7990 
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provides stronger SNR due to the filtering of inelastically scattered electrons by 

only forming the image from the zero loss peak. These inelastically scattered 

electrons do not contribute to phase contrast through constructive and 

deconstructive interference as a result of their incoherence with the elastically 

scattered electrons in the image and as such only contribute to noise. BF-TEM 

likely has slightly better SNR due to the increased signal as all of the electrons 

are collected for the image. 

Figure 7.4: a) Cropped view corresponding to Figure 7.la used to estimate SNR. b) 2D ACF plot of (a). c) 
ACF values sampled along the x-axis of the ACF maximum (orange line) and the fitted gaussian curve for 
signal energy estimation. d-f) Same as (a-c) but for the image in Figure 7.1e. Scale bars are 500 nm. 
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Although BF-TEM and EFTEM provide the strongest SNR, there may be 

instances where STEM imaging is preferred over TEM. In particular, theoretical 

simulations have suggested that the resolution loss to beam broadening in STEM 

is not as severe as the resolution loss to chromatic aberration (219). The 

resolution was not quantified for the images in Figure 7.1 and as such it may be 

that for thicker samples STEM imaging will provide higher resolution than TEM 

imaging. Table 7.1 shows that for both cryo-EM and LC-TEM images that low 

convergence angle STEM provides better SNR when compared with high 

convergence angle STEM images. HAADF-STEM images can be collected 

simultaneously with BF-STEM images, and for each BF-STEM image in Figure 

7.1 corresponding HAADF-STEM images were collected (not shown). The SNR 

was estimated for these images as well and for each the SNR was stronger in 

the BF image. This trend for low convergence angle BF-STEM providing the 

strongest contrast and SNR is in agreement with theoretical (51, 219, 241) and 

experimental demonstrations on cryo-EM and resin embedded thin sections (52, 

54). As such, if maximal SNR is desired than it appears BF-TEM or EFTEM 

Table 7.2: Estimated SNR Values from LC-TEM and Cryo-EM Images 

 

 

 BF-TEM 
BF-STEM     

α = 17.8 mrad 

HAADF-
STEM          

α = 17.8 mrad 
BF-STEM 
α = 5 mrad 

HAADF-
STEM         

α = 5 mrad EFTEM 

LC-TEM 1.8116 0.4892 0.4533 0.5683 0.5229 12.0492 

Cryo-EM 16.7694 1.7283 0.8921 3.9663 1.1996 15.9064 

α = semi-convergence angle of the STEM probe 
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should be used, while if resolution is desired than low convergence angle BF-

STEM should be used. 

One intriguing observation was that for all images in Figure 7.1, the cryo-EM 

images consistently had the highest estimated SNR compared with their liquid 

counterparts despite achieving similar thicknesses for each sample. For the 

images collected, the cryo-EM images were always collected with the cell over a 

hole in the holey carbon film, while the LC-TEM images were always collected 

with two 10nm SiN membranes. It may be that the additional scattering from the 

membranes, although thin, is enough to account for the decrease in SNR in 

these images. STEM image simulation of nanoparticles imaged with and without 

the presence of silicon nitride membranes has demonstrated an increase in 

image SNR which increases as a function of membrane thickness (246). Further 

advances in materials used to form the free standing membranes to decrease 

their contribution to electron scattering in combination with decreasing their thick 

may eventually allow for LC-TEM images to have similar SNR as cryo-EM. There 

may also be additional explanations for the difference in SNR between cryo-EM 

and LC-TEM images, where the additional vibrational states of the water 

molecules in LC-TEM compared with the ice in cryo-EM may play some role in 

generating additional noise in the images. The physical scattering differences 

between liquid water and ice however is not well understood, and will require 

further characterization to be certain of some contribution from the differences in 

phase of water. 
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Another observation made of the differences between LC-TEM images and cryo-

EM images was that cells in LC-TEM were commonly observed to have large, 

low density structures associated with the cells. Both cells in cryo-EM and LC-

TEM had high density structures of varying size and contrast (likely gold 

nanoparticles and energy storage bacterial microcompartments) but only the LC-

TEM images showed cells with low density structures. It may be that these 

structures are the result of the cells reacting to being trapped within the 

hermetically sealed chamber which has limited gas exchange and no exchange 

of fresh nutrient media to the imaging area. Some bacteria are known to form gas 

vacuoles which allow them to float closer to the air-water interface when sensing 

anaerobic growth conditions. It may be the structures seen here are the result of 

nutrient deprivation within the confines of the liquid cell, which has implications 

for how the morphology of cells can be driven or altered by the geometry of the 

device limiting liquid and gas exchange. Further characterization of this 

phenomena will be critical to observing artifact free dynamics of living cells with 

LC-TEM. 

7.4 Electron Irradiation Comparison Between Cryogenic and 
Liquid Samples 

As discussed in chapter 5, the role of electron irradiation damage of cells is 

another critical component affecting accurate interpretation of LC-TEM images. 

For the damage series shown in chapter 5, the cell is shown to shrink with 

electron irradiation exposures as low as 1 e-/Å2. Notably, this electron flux is 
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considerably lower than fluxes used for cryo-EM imaging and tomography of 

whole cells which can achieve nanometer level spatial resolution (40, 63). These 

cells were grown in a nutrient broth media which was supplemented with 50 µM 

AuCl. C. metallidurans is remarkably known for its ability to biomineralize 

environmental gold to form valence zero metallic nanoparticles (206-208). While 

the exact mechanism of this biomineralization pathway is not well understood, 

where the inclusion of the AuCl in these samples was intended to shed light on 

how these organisms perform the biomineralization process. It was considered 

however that the addition of heavy metal clusters to the growth media could 

cause additional damage in the sample by causing a local increase in secondary 

damage during electron irradiation. Cryo-EM studies have demonstrated a local 

increase in radiation damage observed around metal binding regions of proteins 

(247) and LC-TEM experiments have shown increased damage at the interface 

of higher z-number materials that support the hypothesis that the presence of 50 

µM AuCl could accelerate irradiation damage of the cells imaged. Alternatively, 

C. metallidurans has also been shown to upregulate genes involved in oxidative 

stress response when exposed to environmental Au (208). It is possible that the 

upregulation of this pathway may enable the cell to scavenge the radical species 

produced through radiolysis, which may in turn reduce the effect of beam driven 

damage of the cell. To test if damage is appreciably accelerated or mitigated by 

the presence of AuCl in the growth media the damage experiments from chapter 

5 were repeated on cells which were grown without AuCl supplemented in the 

growth media. Additionally, to compare damage mechanisms between cryo-EM 
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and LC-TEM these damage experiments were repeated for samples which were 

frozen in vitrified ice and imaged with identical beam conditions as the LC-TEM 

samples. Cells were imaged with a single frame flux of 1 e-/Å2, where the beam 

was blanked for 20 minutes, and the cell was imaged again at the same flux. This 

was repeated for 4 images and a total cumulative electron flux of 4 e-/Å2 by the 

final frame. Figure 7.5 shows the results of these imaging series where 7.5a and 

7.5b are LC-TEM images and 7.5c and 7.5d are cryo-EM images. Figures 7.5a 

and 7.5c are cells which have been supplemented with 50 µM AuCl in the growth 

media while Figures 7.5b and 7.5d are grown without supplemented gold. For 

both LC-TEM images cells are observed to begin shrinking in size after the first 1 

e-/Å2, illustrated by overlaying the first and last images in the final column in 

Figure 7.5. While it may be that the presence of gold in the growth media may 

still impact the rate of damage, it is not significant enough to be visually apparent 

as shown qualitatively in the images shown. When compared with the images 

acquired with cryo-EM, cells do not exhibit any obvious morphological changes 

after a cumulative electron flux of 4 e-/Å2 when frozen in a layer of vitreous ice. 

Importantly, the lack of observable damage for cryo-EM images does not indicate 

the absence of radiation damage, only that the damage has not propagated to 

manifest as observable changes within the resolution achieved in the image. 

Radiolysis is certainly still taking place in these images, but the radical species 

and broken bonds produced by electron irradiation are locked in place by the 

frozen ice layer in cryo-EM (198, 233), while in LC-TEM they are free to 
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propagate and react with other components of the cell manifesting in visible 

changes to cell ultrastructure.  

To further demonstrate the differences between irradiation damage manifestation 

between LC-TEM and cryo-EM, cells frozen in vitrified ice were imaged at much 

higher electron fluxes until the effects of damage were clearly visible in the 

images acquired. Figure 7.6 shows selected frames from a cryo-EM damage 

series of C. metallidurans in 10 e-/Å2 increments for cells grown supplemented 

with AuCl (Figure 7.6a) and without AuCl (Figure 7.6b). The onset of damage is 

Figure 7.5: a) Damage series of C. metallidurans in LC-TEM grown in media supplemented with 50 µM 
gold chloride. b) Same as (a) but for cells grown without gold chloride. c-d) Same as (a-b) but in cryo. 
Scale bars are 1000 nm. 
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apparent around 300-400 e-/Å2, where damage manifestation is apparent as 

bubble formation. This differs considerably both in onset (from 1 e-/Å2 in LC-TEM 

to ~300 e-/Å2 in cryo-EM) as well as manifestation where LC-TEM damage 

appears as cell shrinking and cryo-EM damage appears as bubble formation. 

Both bubble formation in cryo-EM and cell shrinking in LC-TEM has been 

described in literature (116, 193), supporting the observation of distinct 

differences between damage manifestation between these two techniques. 

Figure 7.6: a) Cryo-EM damage series of C. metallidurans grown in media supplemented with 50 µM gold 
chloride. b) Cryo-EM damage series of C. metallidurans grown without gold chloride. 
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These results have important implications for performing LC-TEM imaging on 

biological structures, as it demonstrates that the well characterized relationship 

between electron irradiation and structural damage is not necessarily directly 

translatable to LC-TEM experiments. Critically, while the loss of structure 

resolution with increasing electron flux has been documented in detail for cryo-

EM (248), the relationship between loss of structure and a corresponding loss of 

function of a protein, enzyme, DNA, or other biomolecule is not known. While 

dehydrated catalase proteins have been demonstrated to lose functionality with 

as low as 0.05 e-/Å2, the presence of water and corresponding radical species 

produced during electron irradiation in LC-TEM may impact the irradiation 

sensitivity of cells and biomolecules during liquid cell experiments. Perhaps most 

importantly, the dose conditions for imaging whole cells with cryo-EM are not 

directly applicable to LC-TEM experiments. Further characterization of the critical 

electron flux threshold which results in inactivation of enzymatic function is the 

next step for determining dose tolerance of organisms and other biological 

samples to ensure that observations in LC-TEM experiments are representative 

of phycological behavior and not the result of beam driven phenomena. 
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8 Chapter 8: Conclusions and Future Outlook 
The work detailed in the earlier chapters of this dissertation outline my efforts at 

developing techniques and instrumentation for holistic structural characterization 

of organisms and macromolecular structures in cryogenic and liquid samples. At 

the smallest scale, cell-free expression of soluble and membrane proteins was 

demonstrated to serve as a viable platform for biomass production and structural 

studies. At the largest scale, whole cell cryo-electron tomography was performed 

to pave a route towards in vivo imaging of molecular structures within a whole 

cell context. Future cryo-EM work will be focused on acquiring single particle 

data on DGAT and high quality tomograms of O. tauri and C. metallidurans using 

direct electron detectors and phase plates for high quality reconstructions and to 

empower visual proteomics and work towards creating a true continuum for 

ultrastructural analysis from single molecules to whole cell context. 

At the outset of this dissertation, work with LC-TEM was originally envisioned as 

a tool for characterizing physiological processes of biomineralization. Throughout 

the course of the work it became apparent that the role of the electron beam and 

its interaction with liquid and biological samples was poorly understood. As a 

result, the LC-TEM work described in this dissertation reflects my attempts to 

characterize the interactions and chemistry changes that occur in liquids with 

biological and chemical samples under electron irradiation. For biological 

samples, while electron damage of cryogenic samples has been well described 

in literature, it is clear from the damage experiments performed in Chapters 5 
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and 7 that the damage mechanisms and thresholds cannot be assumed to be 

directly transferable from the cryo-EM field. As such, the next steps for realizing 

biological imaging with LC-TEM is to characterize the inactivation thresholds of 

enzymes, proteins, DNA, and other biomolecules to identify the imaging 

conditions which need to be used in order to avoid introducing damage artifacts 

that can confound interpretation and analysis of images. 

Finally, continued technology and instrumentation improvement will be a 

necessary component of future work for both the cryo-EM and LC-TEM fields. 

Optimization of the directed LC-TEM flow holder described in Chapter 6 will 

permit expanded reproducibility and generation of meaningful statistics to 

facilitate physiological interpretation. Improvements in electron cameras and 

detectors, along with novel imaging regimes to maximize contrast in weakly 

scattering materials will also be critical in realization of LC-TEM for biological 

material.  

During the above work, I expanded both my scientific repertoire as well as my 

technical skill set. I developed expertise in biology, biochemistry, cell biology, 

chemistry, computing, engineering, fluidics, genetics, microfabrication, molecular 

biology, optical microscopy and transmission electron microscopy. I plan to 

continue pushing the science frontiers listed above as part of my post-doctoral 

work to continue to expand and improve bioimaging capabilities for both 

cryogenic and liquid samples using electron microscopy in hopes of one day 

achieving my goal of understanding biosystems across scales. 
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	Finally, while most commercial holders allow for the flow of fresh sample or solution to the imaging area, the introduction of samples such as cells or particles to the imaging area is complicated by a large flow bypass channel caused by the geometry ...
	In addition to the geometric limitations imposed by the instruments used with LC-TEM, the physical interaction of the electron beam with the liquid sample can create image artifacts and confounds interpretation of experiments and images. When liquids ...
	,𝐻-2.𝑂 → ,𝐻-3.,𝑂-+., 𝑂,𝐻-∙., ,𝑒-𝑎𝑞-−., ,𝐻-∙., 𝑂,𝐻-−., ,𝐻-2.,𝑂-2., ,𝐻-2., 𝐻,𝑂-2∙.
	The rate of production of these species during irradiation is dependent on the so called G-value for each species, defined as the rate of generation per 100 eV of deposited energy (102). While real samples are typically more complex containing solutes...


	2.3 Microfabrication
	While microfabrication techniques have had perhaps the greatest impact on the semiconductor industry for manufacturing computer chips and processors, it is also used to great effect for creating microfluidic and microelectromechanical (MEM) devices (1...
	2.3.1 Photolithography
	Creating reproducible designs across a large number of devices with high throughput requires a reliable method for accurately producing the same pattern. Photolithography is a patterning method which utilizes ultraviolet (UV) light to pattern an organ...
	The first step of photolithography is to ensure the substrate surface is clean and passivated for proper adhesion of the photoresist. Cleaning can be performed with a strong oxidizer to remove metal and organic contaminants, followed by a bake at temp...
	After cleaning the photoresist can be coated onto the substrate, usually through spin coating. This involves spinning the substrate at high speeds with the photoresist on the surface, where the resist is spread evenly across the substrate surface (128...
	Patterning of the resist is done by aligning a photomask with the substrate and exposing with UV to crosslink the photoresist (128). Photomasks are typically designed using computer aided design software and printed using a system which can directly p...

	2.3.2 Deposition and Thin Film Patterning
	Often MEMs applications require that additional material to be deposited and/or patterned on the devices being fabricated. These films may act as conducting, insulating, or adhesion layers and can be crystalline or amorphous. Typically, deposition is ...
	Sputter deposition entails creating a glow discharge plasma between two electrodes in a vacuum (139). To form a glow discharge plasma a partial pressure of an inert gas, such as argon, must generated in the chamber. Naturally, some fraction of this ga...
	Patterning a thin film can be achieved through two different techniques known as lift-off deposition or etch-back deposition (129). In the latter, the thin film is first deposited on the wafer at the desired thickness. Then a sacrificial layer, such a...

	2.3.3 Etching
	Often microfabrication processes require that material is removed to form channels, or patterned features on the surface of the device. This can be done chemically with liquid etchants (known as wet etching) or physically with a plasma (known as dry e...
	Two of the most common wet etchants used is the processing of silicon wafers are HF and potassium hydroxide (KOH). HF is one of the few compounds that etches silicon oxide layers, which naturally form on the surface of silicon substrates under atmosph...
	Dry etching can also be used to etch substrates through a process known as reactive ion etching (RIE). A plasma is generated in the chamber, where the gas used for plasma formation is dependent on the substrate being etched (147). For example, sulfur ...

	2.3.4 Wafer Bonding
	Vertical packaging of devices through wafer bonding is an important process for MEMs fabrication by creating hermetic sealing of chambers or channels. A number of different strategies can be used for bonding depending on the surface properties and ide...
	Direct bonding between films occurs when the atoms of adjacent wafers are brought into very close contact and elevated temperature (155). Covalent bonding forms between the molecules and adjacent films, resulting in strong, hermetic bonding between th...
	Anodic bonding is the process of bonding two wafers by creating a potential across the gap between the wafers resulting in their bonding. This is commonly done between silicon and glass, where the glass substrate is a borosilicate glass (such as pyrex...
	While two metal films can theoretically be heated to their melting point and pressed together to cause sealing, the temperatures required to reach the melting points of most of the films and substrates used in microfabrication make this method impract...
	The following chapters combine the techniques and strategies described here to create new instrumentation for use in conjunction with liquid cell transmission electron microscopy towards visualizing biological dynamics in a native hydrated environment.



	Figure 2.1: a) Simplified illustration of a transmission electron microscopy depicting the route of electrons as they are emitted from the electron source and pass through a sample and transmit information to the image plane. b) A phase contrast trans...
	Figure 2.2: a) Simplified illustration of a scanning transmission electron microscope depicting the lens system used to project the beam onto the sample and to the detectors below the sample plane. b) Bright field scanning transmission electron microg...
	Figure 2.3: a) Simplified illustration of an electron spectrometer depicting the electromagnetic prism used to separate electrons of differing energies onto a CCD detector. b) Typical electron energy loss spectra depicting the zero loss peak and plasmon.
	Figure 2.4: a) A photoresist layer (purple) is deposited on the surface of the wafer (orange and grey) through spin coating. b) A photomask is aligned over the wafer and the photoresist is irradiated with ultra violet light. Regions of the photomask w...
	Figure 2.5: a) Lift-off deposition starts by coating a wafer (gray and orange) in photoresist (purple). b) The photoresist is patterned with the desired design. c) A thin film of the desired metal (yellow) is sputtered onto the wafer. d) The wafer is ...
	3 Chapter 3: A Holistic Approach to Structural Biology - Characterization at the Atomic and Cellular Level
	3.1 Introduction
	Understanding the structure-function relationships of biomolecules, macromolecular complexes, and even cellular ultrastructure is an important step towards harnessing biological machinery for industrial purposes or medical applications. TEM imaging of...

	3.2 Cell Free Expression of Soluble Protein for 2D Crystallography
	The vast majority of known protein structures to date have been solved with x-ray crystallography, although membrane proteins have proved challenging to crystalize and some proteins do not form large stable crystals required for the technique. 2D elec...
	Cell-free protein expression effectively entails harvesting the intracellular machinery and adding a plasmid containing the gene to be expressed. While not a new technique, it has classically been difficult to produce bulk quantities of protein on the...
	The general process for cell free expression using a wheat germ extract kit from Cell Free Sciences is outlined in Figure 3.1. The gene of interest is first cloned into the pEU vector, which has been optimized for translation with wheat germ extract, ...
	3.2.1 Cell Free Expression of CcmK
	While classically defined as lacking distinct membrane bound organelles, many bacteria possess microcompartments with unique functions. Carboxysomes are protein microcompartments found in cyanobacteria and other chemoautotrophs which help to increase ...
	The ccmk gene from Prochlorococcus marinus MIT 9313 was amplified and an N-terminal 3X-FLAG tag and a C-terminal 10X-His tag were added to the gene. A second product was made with the N-terminal 10X-His tag but without C-terminal FLAG tag. The PCR pro...

	3.2.2 2D Crystallography of CcmK
	Protein crystallization through a lipid monolayer at the air-water interphase can aid crystallization of both soluble and membrane proteins which are otherwise difficult to crystalize with conventional techniques (178). The His tags engineered onto pr...
	The crystallization of the proteins in solution can be slow, and often depends on the concentration of protein in solution. Incubation can take place from hours to days for complete crystallization to occur. In the case of CcmK, the incubation require...
	Figure 3.2e shows a (contrast inverted) HAADF-STEM image of CcmK crystals grown using the method described above. It was found that proteins with the N-terminal FLAG tag would not crystalize for any of the crystallization conditions which were attempt...
	An advantage of 2D-electron crystallography is that the crystals formed can be poorly ordered and still give valuable structural information by using image processing (179, 180). While the real space image of the protein crystal is typically low contr...


	3.3 Cell Free Expression of Membrane Proteins for Single Particle Analysis
	Membrane proteins are notoriously difficult to perform structural studies due to their insolubility in water without stabilization with detergents. Isolation, purification, and crystallization of membrane proteins produced in-vivo from organisms is a ...
	Triacylglycerols are a class of lipids which have potential as biofuel feedstocks and are known to be produced by algae under nutrient limiting growth conditions (185). However, their metabolic pathway is not well understood including the final enzyme...
	3.3.1 Cell Free Expression of DGAT into Liposomes
	In O. tauri, the gene dgat consists of two exons of length 0.2kB and 1.2 kB. The exons were cloned from genomic DNA from the microalgae O. tauri using polymerase chain reaction (PCR). The exons were amplified separately to remove the single intron, wh...
	The DGAT gene was transcribed with an SP6 polymerase, and the resulting mRNA produced was combined with wheat germ extract and liposomes and placed below a transcription buffer to set up a bilayer reaction. As the mRNA is translated the membrane porti...
	After expression, the liposomes were imaged with cryo-EM to observe the size and morphology of the produced liposomes. Figure 3.3c shows a cryo-EM image of a liposome which has copies of DGAT within the layers. As is seen, the formed liposomes are mul...


	3.4 Correlating Loss of Structural Information Under Electron Irradiation Using 3D Protein Crystals
	Catalase is a well described protein and is easily crystalized into high aspect ratio sheets which can by one or several layers in thickness making them ideal for electron microscopy. In particular, they have classically been used to characterize elec...
	Catalase crystals grown with this technique form large 2D sheets which can be microns in length and width. While often seen as a single sheet, they can also stack forming sheets several protein layers in thickness creating 3D crystals. Figure 3.4 show...
	3.4.1 Damage of Catalase with Electron Irradiation
	Several damage experiments were performed on catalase crystals frozen in vitrified ice with cryo-EM, and damage data was obtained for both real space and diffraction images. Images were acquired by exposing the catalase crystals to an electron flux of...


	3.5 Whole Cell Imaging
	While structural studies on proteins often achieve atomic level resolution and are extremely valuable towards understanding the structure-function relationship of a protein, single particle and crystallography studies lack the context of the protein w...
	3.5.1 Negative Staining and Room Temperature Imaging
	Figure 3.6a shows an image of O. tauri which has been imaged with BF-TEM after negative staining. Sample preparation for this strategy is the simplest and fastest of all the techniques, where cells are deposited onto a glow discharged EM grid, negativ...

	3.5.2 Cryogenic Electron Microscopy
	In order to counter the dehydration and sublimation of biological material of the cell when exposed to the high vacuum of the TEM, the sample can be frozen in a layer of vitreous ice and maintained at cryogenic temperatures. This not only helps mainta...
	Figure 3.7b is an image of the microalgae Ostreococcus tauri, similar to the image shown in 3.6b. While one of the largest cells imaged in Figure 7, it is one of the smallest known eukaryotes with distinct membrane bound organelles. The ultrastructure...
	Figure 3.7c shows a cryo-EM image of the soil bacterium Cupriavidus metallidurans that is known for its high heavy metal resistance imparted by a number of genes which code for the RND class proteins for sensing and pumping several types of heavy meta...

	3.5.3 Cryogenic Electron Tomography
	In addition to generating 2D projection images, cryo-EM imaging on whole cell structures can be taken at multiple tilt angles on the same sample to obtain tomograms. The resulting tilt series can be reconstructed to form a 3-dimensional model of the s...
	The methodology outlined in this chapter presents the groundwork towards characterizing individual molecules at atomic resolutions and within an “in-situ” context within a whole cell. By determining high resolutions of protein structures through cell ...



	Figure 3.1: Cell free protein production entails inserting the gene of interest into an expression vector which is amplified using E. coli. Amplified plasmid is transcribed to form the mRNA template, which is transferred to the bottom of a bilayer rea...
	Figure 3.2: a) SDS-PAGE gel of CcmK during FLAG purification, bands in the final fraction have the CcmK protein and leftover FLAG from the elution fraction. b) SDS-PAGE gel of CcmK during His purification, the single band in the final fraction shows g...
	Figure 3.3: a) Agarose gel showing exons 1 and 2 of dgat. b) SDS-PAGE gel of DGAT from cell free expression and purified with FLAG purification. c) Bright field transmission electron micrograph of liposomes containing DGAT. Scale bar is 100nm.
	Figure 3.4: Electron diffraction pattern of 3D catalase crystals. Outermost reflections visible are 2-3Å resolution.
	Figure 3.5: a) Bright field TEM images of catalase crystals for sequentially increasing cumulative electron flux. Damage in the form of bubble formation is visually apparent by 50 e-/Å2. b) Fast Fourier transforms corresponding to each image in (a). R...
	Figure 3.6: a) Negative stained, room temperature BF-TEM image of O. tauri. b) Cryogenic BF-TEM image of O. tauri illustrating increased detail compared to the negative stain, room temperature image in (a). All scale bars are 1 µm.
	Figure 3.7: a) Phase contrast cryo-EM image of P. marinus. b) Phase contrast cryo-EM image of O. tauri. c) Phase contrast cryo-EM image of C. metallidurans. d) Phase contrast cryo-EM image of C. metallidurans taken with a phase plate and collected wit...
	Figure 3.8: a) O. tauri at minus 66-degree tilt. b) O. tauri at zero-degree tilt. c) O. tauri at plus 66-degree tilt. d) Central slice from the resulting tomogram. e) Segmentation of subcellular structures in one slice of the tomogram. f) Resulting th...
	4 Chapter 4: Fabrication of Free-Standing Silicon Nitride Membranes for Liquid Cell Transmission Electron Microscopy
	4.1 Introduction
	The reliable fabrication of thin, free standing membranes has been an important capability in the MEMs field for applications ranging from pressure sensors (152) to optical filters (153). Silicon nitride (SiN) is commonly used as a membrane material d...

	4.2 Design of Nanofluidic Holders and Devices
	Replication of commercially available devices for use with commercial LC-TEM holders is constrained primarily by the geometry of the holder, including critically the dimensions of the o-rings used to hermetically seal the liquid sample, the aperture s...
	4.2.1 Devices for the Hummingbird LC-TEM Holder
	The dimensions for the upper and lower devices for the Hummingbird LC-TEM holders are identical as shown in Figure 4.2b. The length and width dimensions of the fabricated devices are approximately 2.6 mm x 2.6 mm, resulting in flexible orientation of ...

	4.2.2 Devices for the Protochips LC-TEM Holder
	The Protochips Liquid Stage holder uses a different sealing strategy from the Hummingbird and DENS Solutions holders utilizing two o-rings instead of three. Sealing is achieved by increasing the size of the upper device such that a larger o-ring seals...

	4.2.3 Devices for the Dens Solutions LC-TEM Holder
	The DENS Solutions holder uses the same three o-ring sealing strategy as the Hummingbird holder, depicted in Figure 4.1, but constrained similarly by the o-ring sealing constraints and size of the holder aperture. The top and bottom devices are equal ...


	4.3 Fabrication of Single Window Devices
	The fabrication process for generation of a single window device for the above devices differs only in the design of the photomask for patterning and the duration of the KOH etch. Masks are created by copying the designs depicted in Figures 4.2a, 4.3a...
	Four-inch wafers are purchased commercially double side polished and double side coated with low stress LPCVD silicon nitride. Silicon nitride film thickness can be 10-50 nm depending on the user needs for the devices, and low stress films are necessa...
	The wafer is then placed in a plastic holder and into a 40% KOH bath at 80C. Etching of the silicon is apparent from hydrogen bubble formation and windows are visible once etched by shining a light through the back of the etching wafer. Fully etched w...
	After removal, the etched wafer should be rinsed in water to remove excess KOH and then dried. If necessary, a 10 minute etch in 5M HCl may be performed prior to rinsing with water to remove any metal contaminants picked up during the fabrication proc...

	4.4 Using Single Window Devices to Characterize Radiation Induced Chemistry Changes in Liquids
	Devices fabricated with the processing described in section 4.3 were tested for use in a Hummingbird Liquid Stage holder to determine the effectiveness and utility of the devices. Testing of devices entailed loading two devices within the tip of the h...
	Initial experiments in the field have demonstrated the precipitation of nanoparticles from solution under electron beam irradiation (97). As existing projects within the group were interested in understanding the formation of nanoparticles for medical...
	The first step for a radiolysis driven growth experiment is to characterize electron beam conditions that can cause the reduction of the precursor solution to precipitate nanoparticles. The redox potential of the solution is dependent on the electron ...
	4.4.1 Simulation of Radiolysis Driven Chemistry Changes
	The particle nucleation experiments above demonstrated an unexpected chemistry state of the system based on typical assumptions about electron beam driven solution changes. To understand these results, numerical simulation of radiolysis products can b...
	The nucleation and growth of metal nanoparticles from an aqueous metal salt precursor solution using LC-TEM has been well documented (97, 105, 151), where the chemistry driving these redox reactions is predicted to be driven by electron beam radiolysi...
	Figure 4.7 shows simulations of the pH (concentration of H+ ions) during electron irradiation. Figure 4.7a shows the pH change with different electron doses. Importantly, the dose for these calculations is expressed in Grays which is a measure of the ...
	Table 1 shows the reactions and corresponding rate constants for atomic cerium with radicals that are produced through radiolysis. These rate constants were
	incorporated into the numerical simulation code, and simulations were run to check the evolution of pH with the included Ce reactions. Figure 4.8a shows the pH evolution of DI H2O while Figure 4.8b shows the pH evolution for an identical electron dose...
	If the dose is high enough, the pH equilibrium is ultimately more acidic than the initial starting pH. This relationship is shown in Figure 4.8c. The rise in pH observed when incorporating the Ce reactions in table 1 is likely due to the excess of OH-...
	,,𝑁𝑂-3.-−.+10,𝐻-+.+,,8𝑒-𝑎𝑞.-−.→,,𝑁𝐻-4.-+.+3,𝐻-2.𝑂  (1)
	,,𝑁𝑂-3.-−.+7,𝐻-2.𝑂+8,,𝑒-−.-𝑎𝑞.→,,𝑁𝐻-4.-+.+10,𝑂𝐻-−.  (2)
	Reaction 1 and reaction 2 are both reactions of NO3 with aqueous electrons would produce an excess of OH- which would drastically drive the pH basic. It may very well be that the inclusion of the NO3 species is enough to substantially increase the pH ...
	The use of numerical simulation to characterize the chemistry of the liquid sample during electron irradiation is an important step in characterizing electron beam-water interactions. While biological samples will ultimately be far more complex than t...



	Figure 4.1: a) Illustration of an exploded view of the typical 3 o-ring sealing strategy for LC-TEM holders. b) Cross sectional illustration of the same holder from (a) demonstrating the sealing strategy. The liquid thickness between the nanofluidic d...
	Figure 4.2: a) Mask design for devices which fit the Hummingbird Liquid Stage holder. b) Illustration of devices produced using the mask depicted in (a).
	Figure 4.3: Figure 4.3: a) Mask design for large upper devices which fit the Protochips Liquid Stage holder. b) Mask design for the smaller lower devices which fit the Protochips Liquid Stage Holder.
	Figure 4.4: a) Mask design for large upper devices which fit the DENS Solutions Liquid Stage holder. b) Illustration of devices produced using the mask depicted in (a).
	Figure 4.5: a) Illustration of a mask for replicating devices for the Hummingbird Liquid Stage holder (individual designs from Figure 4.2) across a 4-inch wafer. b) Subset of  region from (a) showing the overlapping style of the borders of each device...
	Figure 4.6: a) HAADF STEM image series of cerium nanoparticles precipitated under electron irradiation. b) BF STEM image series acquired simultaneously to the images in (a).
	Figure 4.7: a) Simulation of the evolution of solution pH under different incident dose conditions. b) Simulation of pH under electron irradiation and then the relaxation period where the pH equilibrates after the beam is turned off. The dotted red li...
	Figure 4.8: a) Simulation of pH for pure water under electron irradiation. b) Simulation of solution pH for an aqueous solution of cerium nitrate. c) Simulation of solution pH for an aqueous solution of cerium nitrate under varying dose conditions.
	5 Chapter 5: Fabrication of Multiwindow Nanofluidic Devices and the Role of Electron Irradiation History in Interpretation of LC-TEM Results
	5.1 Introduction
	In chapter 4 we demonstrated the utility of LC-TEM for imaging the dynamics of nanoparticle growth at high spatial resolution in conjunction with numerical simulations to explain the chemistry behind the products precipitated from the electron beam (1...

	5.2 Limitations of Single Window Devices
	5.2.1 Bulging of Membranes
	One of the consequences of imaging hermetic chambers in a TEM is the pressure differential that occurs between the high vacuum state of the instrument (typically near 10-6 mbar) and the significantly higher pressure of our ambient environmental sample...
	The practical effect of this bulging induced thickness gradient is that most experiments are limited to the corners of the windows (218). Primarily this is to maximize contrast and resolution, and signal to noise, contrast, and resolution are all redu...

	5.2.2 Limited Imaging Area
	As illustrated in chapter 4 the free-standing silicon nitride membrane formed from the standard fabrication protocol results in a single window which is 50 µm x 300 µm, shown in Figure 5.2a. During assembly, the membranes between two devices can be al...

	5.2.3 Thickness Variation
	As a result of reduced imaging area, for replication of datasets or collection of multiple images of a sample for characterization several different samples must be loaded and assembled into a set of devices. In theory the thickness of the liquid laye...

	5.2.4 Bypass of Flow
	For commercially available holders which have the capability to flow fresh liquid to the imaging area the option of flowing a non-aqueous sample to the imaging area may be attractive for reducing the chances of sample clumping or non-uniform distribut...


	5.3 Design of Multiwindow Devices
	5.3.1 Hummingbird Devices
	The mask dimensions for fabrication of five window devices compatible with the Hummingbird Liquid Stage is shown in Figure 5.5a. The starting etch area for the windows are rectangles 40 µm in width and 700 µm in length. Each window is spaced 110 µm ed...

	5.3.2 Protochips Devices
	Figure 5.6a and 5.6b shows the mask design for fabrication of the upper and lower devices for use in the Protochips Liquid Stage holder. Similar to the Hummingbird devices the outlines of each device for the Protochips holder is a 40 µm width channel ...

	5.3.3 Dens Solutions Devices
	Figure 5.7a shows the mask design for devices used in the Dens Solutions Liquid Stage holder. The border of each device is formed by etching a 40 µm channel around the outline of the device as has been described for the other devices for the Hummingbi...


	5.4 Fabrication of Multiwindow Devices
	The fabrication protocol described in Chapter 4 for fabrication of single window devices utilizing a KOH etch through the full thickness of the substrate results in anisotropic etching of the silicon along the [111] planes. For the [100] oriented Si w...
	5.4.1 DRIE Optimization
	A limitation of using DRIE for etching the Si substrate to form free standing silicon nitride membranes is that the plasma does not have etch selectivity for the silicon nitride. As a result, both the top surface must be masked, to limit etching to on...
	5.4.1.1 Lateral Etch Variation
	In order to characterize the difference in etch depth as a function of wafer position a bare silicon wafer was patterned with the design for the Hummingbird five window devices using a DRIE specific photoresist (AZ P4620). 200 Bosch cycles were perfor...
	5.4.1.2 Resist Thickness Optimization
	Masking for DRIE etching is accomplished using the photoresist AZ P4620 designed specifically for dry etching. While it has good etch selectivity, it is still slowly etched by the plasma during the etch process. To etch through the full thickness of t...
	wafer the resist layer must be thick enough to not etch through during the etch process. The thickness of the wafers for Hummingbird, Protochips, and Dens Solutions devices are 200 µm, 300 µm, and 400 µm respectively. The thickness of the resist then ...

	5.4.2 Fabrication Protocol
	For any of the commercial LC-TEM holders being used the corresponding mask design from 5.3 is copied across a region to cover a standard 4-inch silicon wafer, in the same way that was described in Chapter 4.3 with the single window devices. Masks are ...
	After the hard bake the wafer is ready for DRIE etching. The DRIE Bosh deposition step uses an RF forward power of 10 W, an ICP forward power of 2200 W, SF6 at 1 sccm, C4F8 at 80 sccm, and lasts 5 s. A helium backing of 5 sccm is used for wafers 200-3...
	After DRIE etching the remaining 10-20 µm of silicon must be removed to form the free standing membranes using KOH etching. The remaining AZ P4620 on the wafer is stripped by soaking the wafer in nanostrip 2x at 110oC until the resist has been totall...

	5.4.3 Spacers and Focus Bars
	Patterning of metal thin films on the surface of the devices prior to window formation is also possible using lift off deposition techniques. Material to act as spacers to dictate the minimum thickness of the liquid layer may be patterned on the wafer...
	After photoresist patterning the wafer is loaded into a magnetron deposition unit. For patterning gold thin films the chamber is pumped to a backing pressure of 10-7 mtorr, followed by an initial deposition of 10nm of chromium as an adhesion layer. Ch...


	5.5 Low Dose Imaging Regime for LC-TEM
	The patterned focus bars described in section 5.4.3 are designed to be used as high contrast fiducials for finding optimal focus before collecting LC-TEM data sets. For samples which are sensitive to electron irradiation, either for damage events or i...
	While an effective imaging method to reduce irradiation on the sample prior to image collection, it should be noted that there are still several limitations reducing the precision of these grid bars. The membrane bulging effects described in 5.2.1 res...

	5.6 Electron Irradiation History
	The dynamic, liquid environment of the liquid cell introduces unknown variables related to the production of radial species and their damage of the sample of interest as a result of electron irradiation. A significant number of recent publications in ...
	5.6.1 Lateral Diffusion of Radiolysis Products
	While advantageous, the increased imaging area empowered by the multi window devices described in section 5.4 raises a fundamental question about the mobility of radical species generated from electron irradiation of water. Numerical simulations of th...

	5.6.2 Biotin-Streptavidin Crystals
	Since the desired application for our systems is for biological imaging, ideally testing the diffusion of damage products can be evaluated with a biological system. Initially to track the role of increasing cumulative electron irradiation, biotinylate...
	Figure 5.13 shows the results of tracking the positions of particles under electron irradiation for two different areas (222, 223). Figures 5.13a and 5.13b maximum displacement of each particle from each frame of the acquired video. As evidence by the...

	5.6.3 Catalase Crystals
	Another mechanism for tracking damage over multiple exposures could be tracking the fading of reflections in 2D catalase protein crystals as described for cryo-EM in Chapter 3. Catalase crystals were loaded into the liquid cell and imaging was attempt...

	5.6.4 Silver Nitrate Precipitation
	The precipitation of metal nanoparticles from an aqueous precursor is well characterized and represents the bulk of published material from LC-TEM (71, 97, 100, 225-228). The reduction of aqueous silver nitrate in particular has been well described (7...
	Figure 5.15c shows the mean particle diameter for each video, where the growth rate of particles in each video follow a t1/2 power law, indicating reaction limited growth (229, 230), independent of the order of acquisition. This indicates that for at ...
	Growth experiments were repeated for both 0.1 mM and 0.5 mM AgNO3 precursor solutions both with and without flow of fresh precursor to the imaging area. The thickness of each imaging region was measured with EELS in order to ensure that the thicknesse...


	5.7 Imaging Whole Cells with LC-TEM
	Imaging biological structures with LC-TEM additionally needs to take special care to control the history of electron irradiation on the sample as beam damage can drive morphological changes which can be misinterpreted as physiological behavior or morp...
	5.7.1 Electron Damage of Whole Cell Structures
	Beam damage is a critical consideration of electron microscopy of biological samples, where the incident electron beam can break bonds of the sample molecules through primary and secondary damage (193). For biological samples, electron beam-sample int...
	To evaluate the effects of electron flux on a biological sample, C. metallidurans was imaged with LC-TEM. Low dose imaging techniques in combination with patterned focus bars described in section 5.5 were used to minimize electron irradiation of the c...



	Figure 5.1: a) Low magnification HAADF STEM image of a LC-TEM window depicting a contrast gradient towards the center of the window indicating increasing thickness. b) Illustration of membrane bulging based on EELS thickness measurements taken from a ...
	Figure 5.2: a) Illustration of a single rectangular window region for LC-TEM. b) Illustration of a parallel window alignment strategy where slight misalignment between windows results in non-equivalent thicknesses at each window corner. c) Illustratio...
	Figure 5.3: a) Frames from three different nanoparticle growth experiments where the precursor and imaging conditions were identical between each experiment and the only difference was thickness. Different growth kinetics are apparent between the diff...
	Figure 5.4: a) Cross sectional illustration of a flow holder depicting the bypass flow channels where liquid can flow around the sample. b) Top down illustration of the same holder in (a) aiding visualization of how flow can pass around, or over, the ...
	Figure 5.5: a) Mask design for multiwindow devices which fit the Hummingbird Liquid Stage holder. b) Illustration of devices produced using the mask depicted in (a).
	Figure 5.6: a) Mask design larger upper for multiwindow devices which fit the Protochips Liquid Stage holder. b) Mask design for the smaller lower multiwindow devices which fit the Protochips Liquid Stage holder. c) Illustration of devices produced us...
	Figure 5.7: a) Mask design for multiwindow devices which fit the DENS Liquid Stage holder. b) Illustration of devices produced using the mask depicted in (a).
	Figure 5.8: a) Cross sectional illustration of a nanofluidic device fabricated with a conventional KOH etch depicting the inward tapering pits. The sealing o-rings dictate a single window for these devices. b) Cross sectional illustration of a multiwi...
	Figure 5.9: a) Depiction of depth measurements taking with optical profilometry across a four-inch wafer. b) DRIE etch depth as a function of position as measured by optical profilometry.
	Figure 5.10: a) Large upper device for use in a Protochips Liquid Stage holder. b) Small, lower device for use in a Protochips Liquid Stage holder patterned with spacers. c) Same as (b) but with no spacers. d) Devices for use in a Hummingbird Liquid S...
	Figure 5.11: a) Optical image of multiwindow device patterned with grid bars. b) In-situ image of grid bars assembled within a liquid cell. c) Demonstration of “low dose” imaging of 10 nm gold nanoparticles depicting the “search”, “focus”, and “acquir...
	Figure 5.12: a) Initial scan of a STEM experiment precipitating silver nanoparticles from an aqueous precursor. b) Final frame of the same region from (a) where the field of view has not changed. c) Lower magnification image of the region imaged throu...
	Figure 5.13: a) Particle tracking data from the first video tracking the damage of Au nanoparticles anchored to the window via streptavidin-biotin linkers. b) Particle tracking data from the second video tracking damage, where the displacement of part...
	Figure 5.14: a) Low magnification image of 3D catalase crystals in a liquid stage. b) High magnification image of region outlined by orange box in (a) showing high noise and low signal common in very thick samples.
	Figure 5.15: a) Window map depicting windows (black numbers) and experiment locations (red numbers). b) Frames of experiments 2, 6, and 12 showing the precipitation and growth of silver nanoparticles from a silver nitrate precursor. c) Plot of mean pa...
	Figure 5.16: a) Final frames of silver nanoparticle growth experiments with no flow where the location of each image represents the window within the grid that experiment was performed at. The blue star notates the first experiment and the orange tria...
	Figure 5.17: a) Low magnification of liquid cell where grid bars are visible with a cluster of cells near the center (outlined in blue). b) Image of region outlined in (a) of C. metallidurans. c) Enlarged region outlined in (b) showing internal detail...
	Figure 5.18: a) Damage series of C. metallidurans at increments of 1 e-/Å2 for each frame. b) Outline of cells in the first frame of (a) projected over each subsequent image depicting cell shrinking with increasing cumulative electron irradiation. c) ...
	6 Chapter 6: Nanofluidic Platform for Directed Flow and Enhanced Environmental Control
	6.1 Introduction
	The improvements to imaging area described in Chapter 5 were able to solve some issues of reproducibility and increase the sampling capacity of individual LC-TEM experiments. However, inconsistencies in thickness variation between separately assembled...
	The strategy for solving issues related to thickness reproducibility and bypass of flow is illustrated in Figure 6.1. The strategy for assembling devices with current commercial devices entails manually sandwiching a liquid sample between two devices....
	This strategy would not only allow for reliable control over the thickness of the sample, but the directed flow regime would also permit mixing to happen inside the devices rather than outside. Mixing is advertised as a feature for some commercially a...

	6.2 Design of Nanofluidic Holder
	When designing custom holders for FEI and JEOL transmission electron microscopes, the holders can be divided into three segments, each which performs a different function and has different design constraints. The first is the design of the shaft of th...
	6.2.1 Thermo Fisher/FEI 3 Port
	Holders for Thermo Fisher/FEI microscopes have the highest constraints on the dimensions of the tip due to the design of the microscope pole pieces and goniometer. To determine both the tolerances for replicating the shaft to fit the microscope goniom...
	6.2.1.1 Thermo Fisher/FEI Shaft
	Figure 6.2a illustrates a fully assembled liquid stage holder for use with goniometers found on Thermo Fisher/FEI microscopes. The red arrow in Figure 6.2a points to the base of the shaft, which rests against the outside of the goniometer. The design ...
	6.2.1.2 Thermo Fisher/FEI Tip
	Figure 6.2b shows an exploded illustration of the liquid tip including the microfabricated devices with the fluidics channel and electron transparent windows, as well as the o-rings used for sealing. The horizontal channels which hold 360 µm microflui...

	6.2.2 JEOL 5 Port
	Similar to the Thermo Fisher/FEI holder, dimensions for a holder to fit JEOL TEMs was determined by measuring several commercial holders made for JEOL TEMs. The shaft design is considerably different than the Thermo Fisher/FEI shaft, although still re...
	6.2.2.1 JEOL Shaft
	Figure 6.3a shows a JEOL holder, where critical measurement points are noted by arrows. Similar to the Thermo Fisher/FEI holder, the base of the shaft is marked by the red arrow in Figure 6.3a. The body of the holder should be flush with this surface ...
	6.2.2.2 JEOL Tip
	Figure 6.3b shows an exploded version of the 5 port liquid tip to fit to the end of the JEOL shaft. In the same manner as the Thermo Fisher/FEI liquid tip it is fabricated in two sections and assembled with a vacuum grade epoxy. An o-ring groove is lo...


	6.3 Fabrication of Nanofluidic Devices
	The devices for the directed flow holders described in section 6.2 are fabricated in a similar fashion to the devices described in chapters 4 and 5, where free standing electron transparent membranes are fabricated by a combination of dry and wet etch...
	6.3.1 Design of 3 Port Devices
	Figure 6.4 shows the mask design for devices used with the Thermo Fisher/FEI 3 port holder described in section 6.2. Similar to the devices described in chapters 4 and 5 the devices are sectioned by patterning a 40 µm width channel around the edges of...
	Figure 6.4b shows the mask design for patterning the spacer and bonding material, as well as dictating the flow channel. The terminal positions of the channel is the location of the vertical flow channels. Although a number of different designs were t...

	6.3.2 Design of 5 Port Devices
	Figure 6.5 shows the mask design for devices which fit the JEOL 5 port directed flow holder described in section 6.2. Devices are similar to the 3 port devices described in section 6.3.1, where 5 port devices are larger to accommodate 2 extra vertical...
	Figure 6.5b shows the mask for patterning the flow channel and spacer/bonding material, where each channel terminates at one of the vertical flow channel locations and is also a solid film design as has been determined with optimum bonding.

	6.3.3 Fabrication
	Masks detailed in Figures 6.4 and 6.5 are repeated to fill a standard 4-inch wafer with a maximum number of devices. In total, 3 masks are used to pattern two wafers. The first mask patterns for thin film deposition and is used for both wafers for top...
	Initially both wafers are patterned for lift off deposition of the bonding material. The masks for flow channel design in Figures 6.4b and 6.5b are printed as negative masks for optimal lift off. Wafers were coated with the negative photoresist AZ 521...
	At this point both wafers are patterned with the same design where one wafer has a thin film of polysilicon and one wafer has a thin film of gold. One wafer is then patterned with the mask design for the lower devices containing the vertical flow chan...

	6.3.4 Wafer Bonding
	Bonding of wafers to achieve hermetic sealing is a challenging process that is highly dependent on surface roughness and sensitive to cleanliness (236). Direct bonding strategies in particular require very low surface roughness, often below 1 nm rms, ...
	Eutectic systems may also be used for wafer bonding, which are advantageous since bonding can be achieved at lower temperatures (167). Gold and silicon each have melting temperatures greater than 1000oC, but have a eutectic temperature around 370oC (1...
	As a result, window etching and device sectioning was performed prior to bonding, and individual devices were bonded together. This significantly reduced throughput and increases the chances of windows breaking during the bonding phase but was able to...
	Figure 6.6 shows 3 port devices which were bonded using the Au-Si eutectic system with the strategy described above. Figures 6.6a-b are devices that were bonded and separated after bonding. While regions of the gold and silicon thin films can be seen ...
	While bonding can be achieved, another failure mode for the process described here is the membranes being damaged during the bonding phase. Figure 6.6e-f show images of windows after bonding, where the window in 6.6e can be seen to have a tear in it w...


	6.4 Demonstration of Nanoparticle Mixing
	To demonstrate the ability for two initially separate samples to be introduced to the imaging area through each inlet channel and make their way to the imaging area, a nanoparticle flow experiment was performed. One liquid line flowed 50 nm silver nan...
	Some improvements and optimizations may still be possible with the bonding processes described here to increase throughput success rate. Additional instrumentation may allow for better bonding strategies to be performed at the wafer level which would ...


	Figure 6.1: a) Cross sectional view of a directed flow imaging strategy depicting the sealing and delivery of flow to the imaging region. Features in this image are to scale. b) Top down view illustration of a directed flow holder demonstrating how li...
	Figure 6.2: a) CAD model of a complete holder for use in a Thermo Fisher/FEI microscope. Critical dimensions are labeled on the shaft on the holder where the base (red arrow), microswitch trigger (blue arrow), shaft o-ring (white arrow), pin (orange a...
	Figure 6.3: a) CAD model of a complete holder for use in a JEOL microscope. Critical dimension on the shaft are labeled by arrows, the base (red arrow), pin (orange arrow), shaft o-rings (white arrows), and imaging aperture (black arrow). b) Exploded ...
	Figure 6.4: a) Mask design for multiwindow devices which for use with the 3 port holder. b) Illustration of devices produced using the mask depicted in (a).
	Figure 6.5: a) Mask design for multiwindow devices which for use with the 5 port holder. b) Illustration of devices produced using the mask depicted in (a).
	Figure 6.6: a-b) Upper and lower devices separated after bonding where sealing was not achieved. Incomplete bonding regions are visible in the silicon and gold films. c-d) Upper and lower devices separated after bonding where sealing was achieved. In ...
	Figure 6.7: a-f) Frames of a window in a directed flow holder during the flow of 100nm gold and 200 silver nanoparticles from different inlet lines. Both particle sizes are observed over the window area over the course of the experiment indicating mix...
	7 Chapter 7: Optimizing Imaging of Low Contrast, Beam Sensitive Samples in LC-TEM
	7.1 Introduction
	In Chapter 5 the increased sensitivity of biological samples to the electron beam in LC-TEM was demonstrated, where beam driven morphological changes were observed with electron fluxes as low as 1 e-/Å2. While irradiation thresholds for the functional...

	7.2 Comparison of Cryogenic and Liquid Imaging
	The majority of published biological structures determined with cryo-EM and tomography have been performed with BF-TEM, where the use of phase plates (45) and energy filters can further improve image contrast. Especially for imaging larger structures ...
	STEM imaging can alternatively be used for imaging, where effects of chromatic aberration are not seen due to the lack of a post specimen objective lens. While TEM imaging is generally practically limited to bright field imaging, STEM imaging can coll...
	Low convergence angle STEM imaging is an alternative strategy for imaging thick, low contrast samples to overcome issues of defocus artifacts. This has been discussed extensively in theory (51, 219, 240-242), and demonstrated experimentally to give ad...
	To address this limitation the organism Cupriavidus metallidurans was imaged with both LC-TEM and cryo-EM and across several imaging modalities to determine which modalities give the strongest contrast and signal to noise ratio (SNR). Cells were image...
	Additionally, for each imaging modality the incident electron flux was kept constant at 1 e-/Å2 to ensure that comparison between different imaging modalities observes differences in image formation differences rather than differences in electron flux...
	7.2.1 BF-TEM
	Figure 7.1a shows a BF-TEM image of cells acquired in a liquid cell. The measured thickness of the water layer near the cells was 1.96 IMFP. Contrast in the image is strong, and the cells are clearly visible against the background water in the sample....

	7.2.2 High Convergence Angle STEM
	Typical STEM imaging on the instrument used is performed with a convergence semi-angle of 17.8 mrad. This allows for a very small probe to be formed for atomic resolution imaging, but results in considerable geometric resolution degradation for sample...

	7.2.3 Low Convergence Angle STEM
	By changing the strength of the condenser lens and decreasing the size of the condenser aperture just before the sample plane (typically condenser lens 2) the semi-convergence angle of the electron probe can be reduced. With a lower convergence angle ...

	7.2.4 Energy Filtered TEM
	The use of an electromagnetic prism can be used to separate electrons by their energies after passing through a sample, where electrons which have undergone inelastic collisions and experienced an energy loss will be focused to a different point than ...
	Figure 7.1d shows an EFTEM image of cells in a liquid cell where the thickness near the cell was 2.14 IMFP. The width of the slit was 30 eV and was centered on the zero-loss peak for image formation. Contrast for the cells is strong against the liquid...
	Figure 7.2 shows the EELS spectrums for each image from which the thickness in mean free paths was calculated from. In general, the thickness of all samples was around 2-2.3 IMFP. It is important to note that these thicknesses are not ideal as a resul...


	7.3 Quantification of Signal to Noise Ratio
	While Figure 7.1 provides a qualitative comparison of differences between electron imaging modalities on image contrast and SNR, the visual representation of the image can be altered by the brightness and contrast settings of the image which is chosen...
	𝑆𝑁𝑅= ,,,𝛷-11.-𝑁𝐹.,0,0.−,,µ-1.-2.-,,,𝛷-11.,0,0.−𝛷-11.-𝑁𝐹.,0,0..
	Equation 7.1 shows the calculation for SNR estimation from a single image where the noise energy (Φ11NF(0,0)) and signal energy (Φ11(0,0)) can be determined from the 2-dimensional ACF of the image (245). The mean value of the image (µ12) is measured s...
	With the noise energy, signal energy, and image mean determined the SNR of an individual image can be estimated. To confirm that the implementation of the SNR estimation method is working as described a single STEM image was duplicated and gaussian no...
	Figure 7.3 shows these images, where the noise variance increased by 0.01 for each image in a-e. The simplified sections of the 2D ACF around the maximum value (at the origin) is shown for each image, where the orange line is the ACF values and the bl...
	Table 7.2 shows the estimated SNR values for each image in Figure 7.1 using the single image SNR estimation method described above, where Figure 7.4 shows SNR estimation process for the BR-TEM liquid and cryo-EM images. Of all the electron imaging mod...
	Although BF-TEM and EFTEM provide the strongest SNR, there may be instances where STEM imaging is preferred over TEM. In particular, theoretical simulations have suggested that the resolution loss to beam broadening in STEM is not as severe as the res...
	One intriguing observation was that for all images in Figure 7.1, the cryo-EM images consistently had the highest estimated SNR compared with their liquid counterparts despite achieving similar thicknesses for each sample. For the images collected, th...
	Another observation made of the differences between LC-TEM images and cryo-EM images was that cells in LC-TEM were commonly observed to have large, low density structures associated with the cells. Both cells in cryo-EM and LC-TEM had high density str...

	7.4 Electron Irradiation Comparison Between Cryogenic and Liquid Samples
	As discussed in chapter 5, the role of electron irradiation damage of cells is another critical component affecting accurate interpretation of LC-TEM images. For the damage series shown in chapter 5, the cell is shown to shrink with electron irradiati...
	To further demonstrate the differences between irradiation damage manifestation between LC-TEM and cryo-EM, cells frozen in vitrified ice were imaged at much higher electron fluxes until the effects of damage were clearly visible in the images acquire...
	These results have important implications for performing LC-TEM imaging on biological structures, as it demonstrates that the well characterized relationship between electron irradiation and structural damage is not necessarily directly translatable t...


	Figure 7.1: a) BF-TEM in liquid. b) Low convergence angle BF-STEM in liquid. c) High convergence angle BF-STEM in liquid. d) EFTEM in liquid. e) BF-TEM in ice. f) Low convergence angle BF-STEM in ice. g) High convergence angle BF-STEM in ice. h) EFTEM...
	Figure 7.2: Electron energy loss spectra from locations near cells in Figure 7.1, where the thickness of each sample was similar.
	Figure 7.3: a-e) HAADF-STEM images with added white gaussian noise with increasing variance of 0.1, along with the two dimensional sample of the 2D ACF and fitted gaussian curve for each image.
	Figure 7.4: a) Cropped view corresponding to Figure 7.la used to estimate SNR. b) 2D ACF plot of (a). c) ACF values sampled along the x-axis of the ACF maximum (orange line) and the fitted gaussian curve for signal energy estimation. d-f) Same as (a-c...
	Figure 7.5: a) Damage series of C. metallidurans in LC-TEM grown in media supplemented with 50 µM gold chloride. b) Same as (a) but for cells grown without gold chloride. c-d) Same as (a-b) but in cryo. Scale bars are 1000 nm.
	Figure 7.6: a) Cryo-EM damage series of C. metallidurans grown in media supplemented with 50 µM gold chloride. b) Cryo-EM damage series of C. metallidurans grown without gold chloride.
	8 Chapter 8: Conclusions and Future Outlook
	The work detailed in the earlier chapters of this dissertation outline my efforts at developing techniques and instrumentation for holistic structural characterization of organisms and macromolecular structures in cryogenic and liquid samples. At the ...
	At the outset of this dissertation, work with LC-TEM was originally envisioned as a tool for characterizing physiological processes of biomineralization. Throughout the course of the work it became apparent that the role of the electron beam and its i...
	Finally, continued technology and instrumentation improvement will be a necessary component of future work for both the cryo-EM and LC-TEM fields. Optimization of the directed LC-TEM flow holder described in Chapter 6 will permit expanded reproducibil...
	During the above work, I expanded both my scientific repertoire as well as my technical skill set. I developed expertise in biology, biochemistry, cell biology, chemistry, computing, engineering, fluidics, genetics, microfabrication, molecular biology...
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